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Abstract

In using machine learning to train predictive models, training data often under-specify
solutions due to limited sample size and/or the lack of diversity in samples. When se-
lecting a solution (or model) for deployment, we must consider metrics beyond statis-
tics calculated in distribution (i.e., statistics on samples available in model learning such
as training and validation error) so that we can identify and correct potential pitfalls of
the learned model when applied to out of distribution scenarios (e.g., the deployment
environment). To address model underspecification, in this thesis, we develop several
methods that leverage domain knowledge during model selection.

First, to select among solutions, one must understand the learned model. We demon-
strate how one can achieve a holistic understanding by including system level knowledge
about the problem. Our approach, Shapley Flow, takes a user defined causal graph on the
features as input and summarizes the attribution to model prediction along the causal
edges. Shapley Flow unifies three widely used Shapley-value based model interpretation
methods and elucidates the need to consider the data generation procedure, capturing
both the direct and indirect impact of features. Second, domain knowledge is not only
useful in model interpretation, it is also crucial in training. If one knows what features
experts rely on, one can incorporate such knowledge to avoid using proxy features that
are spuriously correlated with the outcome. We propose a novel regularization technique
to learn a credible model, one that is both accurate and is aligned with domain experts. Us-
ing our approach, Expert Yielded Estimate (EYE), we demonstrate on two large scale clin-
ical datasets that one can significantly increase alignment with expert knowledge with-
out sacrificing accuracy, while outperforming an approach based on expert knowledge
alone. Finally, we connect credible learning with shortcut learning, identifying sufficient
assumptions for credible models to eliminate the dependence on spurious correlation. In
this process, we extend the EYE penalty to work with nonlinear models and work on tasks
with domain knowledge not expressed on the input space. Applied to two benchmark
datasets, our approach successfully mitigates shortcut learning, even when assumptions
are moderately violated. By leveraging domain knowledge, our proposed approaches
help build trustworthy systems that can be safely applied in practice.

xii



Chapter 1

Introduction

Across application domains, machine learning models have demonstrated exceptional
performance [1]–[5]. For example, in the game of Go, AlphaGo defeated 18 time world
Go champion Lee Sedol in 2016 [1]. In biology, AlphaFold made important breakthrough
in protein folding, a problem that has perplexed researchers for more than 50 years [2]. In
language modeling, computer vision, and even clinical diagnostics, deep learning models
have demonstrated comparable performance to humans on challenging datasets [3]–[5].
However, despite seemingly good performance, practitioners should be wary of adopt-
ing machine learning models too quickly. In particular, machine learning models that
generalize well in the training distribution can result in very different generalization per-
formance in deployment, a phenomenon known as underspecification [6]–[10].

Underspecification arises for many reasons. The training dataset could exhibit se-
lection bias. For example, when classifying dogs versus wolves, a model may rely on
features pertaining to the indoors to recognize a dog, resulting in a failure to general-
ize when dogs appear outside [11]. In settings with a limited sample size or samples
lacking diversity, spurious correlations can lead to a model that relies on proxy variables
or “shortcuts”. The use of deep networks further exacerbates underspecification. Such
models are overparametrized (i.e., have more model parameters than what the training
samples can afford), which necessarily leads to the existence of multiple solutions. Note
that underspecification persists even with low capacity models. During training, a reg-
ularized linear model is equally susceptible to using “indoor” features to differentiate a
dog from a wolf compared to a deep network, despite the decision process being more
transparent. Furthermore, as long as the sampling distribution is biased (e.g., lack of di-
versity: dog images are consistently taken indoor), gathering more samples may not help
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FIGURE 1.1: A schematic picture of the dissertation. We focus on tackling
both directions of human model communication. For human to understand a
machine’s reasoning in detail, we introduce an axiomatic explanation method
Shapley Flow in Chapter 3. For machine to take human feedback on expla-

nation, we introduce credible learning in Chapter 4 and 5.

with underspecification. Since minimizing empirical risk alone does not guarantee ro-
bust solutions, we are interested in finding other ways to minimize generalization error
in the real world.

While there are many settings potentially related to underspecification (e.g., transfer
learning when we have limited labeled samples from the deployment environment; un-
supervised domain adaptation when we have unlabeled deployment data), in this dis-
sertation, we explore settings in which deployment data are unavailable at the time of
training and validation. Instead, we assume access to partial domain knowledge about
feature importance within the deployment environment. This knowledge is available
from experts who gain experience in deployment environments to which machines do
not have access (e.g., causal knowledge learned from conducting experiments; common
sense developed by interacting with the real world). For example, in healthcare, there
is a significant body of literature documenting risk and protective factors for diseases.
While we may not have access to the experimental data, we can use established scientific
knowledge to guide model training and selection.

2



1.1 Challenges and Opportunities

Incorporating feature level domain knowledge requires a two-way interpretation between
machines and humans. First, humans need to understand the machine in order to choose
wisely when presented with multiple solutions of the same test performance. This calls
for designing model interpretation methods to help identify potential flaws in solutions.
Second, the machine needs to incorporate human feedback in order to correct its often
fragile reasoning. This calls for designing priors for machine reasoning. As illustrated
in Figure 1.1, we propose novel algorithms to tackle both directions. To help humans
understand how machines reason, our edge attribution method [12], Shapley Flow, im-
proves on existing feature attribution methods with a causal graph. To help machines un-
derstand how humans reason, our regularization technique [13], expert yielded estimate
(EYE), uses expert given feature attributions as priors for the model’s feature importance.
However, not all domain knowledge can be applied to the input space. For example,
concepts like “stripes” that can be used to distinguish between animals in an image are
difficult to specify in the input space. We explore methods for incorporating concept level
domain knowledge in the final chapter. Below, we summarize each direction.

In Chapter 3, we improve feature attribution [14]–[17], a popular form of model in-
terpretation, by capturing both the direct and indirect effects of features. Existing ap-
proaches that incorporate the causal graph on the inputs exhibit clear limitations: either
they completely ignore the dependencies across features (features with only indirect in-
fluence are given 0 attribution, despite the fact that changing their values significantly
affects the output), or they exclusively focus on the independent variables of the graph
(non-source features are given 0 importance). Our approach, Shapley Flow, solves the
problem by assigning credit to edges instead of nodes in a graph, showing both the direct
and indirect influence of features. Furthermore, Shapley Flow is the unique solution to
a generalization of the Shapley value axioms [18] to directed acyclic graphs. We demon-
strate the benefit of using Shapley Flow to reason about the impact of a model’s input on
its output through case studies on two real datasets. In addition to maintaining insights
from existing approaches, Shapley Flow extends the flat, set-based, view prevalent in
game theory based explanation methods to a deeper, graph-based, view. This graph-based
view enables users to understand the flow of importance through a system, and reason

3



about potential interventions.
In Chapter 4, we look at how to incorporate feature level prior knowledge to tackle

model underspecification. Specifically, we ask whether it is possible to learn a model that
is not only consistent with the data, but also aligns well with domain knowledge. We
refer to such a model as a credible model. In solving this problem, we developed a novel
regularization technique, EYE, that is both theoretically and empirically sound. EYE en-
courages selection among highly correlated features to favor a solution that is dense in
expert identified features and sparse otherwise. Applied to two large scale patient risk
stratification problems, our proposed method is as accurate as all baseline models, but
more closely aligns with domain knowledge.

Prior work in credible learning assumes domain knowledge can be directly applied on
the input space (i.e., feature level domain knowledge). While this assumption often holds
for tabular data, it is hard to justify for complex input modalities such as images and time
series. Just imagine how hard it is for a bird expert to pinpoint the exact pixels used in
identifying a bird compared to saying that the bird has a red beak (i.e., a “concept” that
is derived from the input). Decoupling domain knowledge with input features increases
the applicability of credible learning. In Chapter 5, we look at how to incorporate concept
level prior knowledge to tackle underspecification. To do that, we propose the concept
credible model (CCM), a method that combines EYE regularization with the concept bot-
tleneck model (CBM) [19]. Our approach not only incorporates concept level domain
knowledge, but also addresses CBM’s known deficiency to deal with incomplete con-
cepts (i.e., the input features provide additional information towards the target given the
concepts). In this chapter, we focus on mitigating shortcut learning. That is, we consider
scenarios in which the training and validation datasets contain spurious correlations (i.e.,
shortcuts) unlikely to generalize to the deployment environment. In such cases, we would
like to discourage the model from using/taking these shortcuts during training. Our the-
oretical analysis sheds light on the connection between credible and shortcut learning,
identifying sufficient assumptions for a credible model to eliminate the use of shortcut.
Empirically, we demonstrate that CCM is more robust to shortcuts compared to baseline
approaches, even when the identified sufficient assumptions are moderately violated.
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1.2 Contributions

To address model underspecification using domain knowledge, we present several con-
tributions in this dissertation, summarized as follows:

• Enabling a system-level view of Shapley value based feature attribution. In Chap-
ter 3, we present Shapley Flow, an explanation method that uniquely satisfies a nat-
ural extension of Shapley value axioms to graphs. The resulting method unifies
three existing feature attribution methods into a single framework with attractive
theoretical properties and strong empirical performance, highlighting both the di-
rect and indirect effects of features [12].

• Formalizing the idea of credible learning with an approach that leads to accu-
rate linear models with sensible explanations. In Chapter 4, we present the expert
yielded estimates (EYE) penalty, a regularization technique that incorporates fea-
ture level domain expertise to tackle underspecification. We formalize the notion of
a credible model in the linear setting (i.e., a model that aligns well with expert’s rea-
soning while being consistent with data). The resulting method exhibits desirable
theoretical properties and works well on two large scale clinical datasets. [13].

• Connecting credible and shortcut learning while incorporating non-input level
domain knowledge. In Chapter 5, we decouple domain knowledge from input
features, creating concept based credibility. This is achieved through a new model
training procedure, concept credible model (CCM), that combines credible models
with concept based models. CCM extends the EYE regularization to apply on non-
linear models with concept level domain knowledge. We formalize and identify
sufficient conditions in which CCM can mitigate shortcut learning. These condi-
tions allow domain knowledge to be incomplete and the shortcut to be perfectly
correlated with other features, settings in which many previous works fail. Em-
pirically, we show that CCM leads to better generalization on out of distribution
datasets compared to baselines.

Ensuring good performance in the deployment environment is crucial for the adop-
tion of machine learning models in high stake domains such as healthcare. To that end,
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in this dissertation, we present a variety of methods that use prior knowledge to guide
model selection. The rest of the dissertation is organized as follows. The background
chapter (Chapter 2) describes relevant concepts used throughout the dissertation. Chap-
ter 3, 4, and 5 describe the technical details of our contributions. And the concluding
chapter (Chapter 6) reflects on future directions in relation to the work presented in this
dissertation.
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Chapter 2

Background

In this chapter, we briefly review important concepts referenced throughout the reminder
of the dissertation. First, we introduce Shapley value, which forms the basis of Shapley
Flow in Chapter 3. Second, we formalize the notion of causal graphs. Causal graphs are
used in Chapter 3 as user defined input to aid model interpretation and used in Chapter 5
to formalize our problem setup. Third, we review interpretability, contextualizing Shap-
ley Flow in the literature. Fourth, we summarize common parameter norm regularization
methods. They are the baselines compared to the EYE penalty in Chapter 4. Finally, we
formalize the out of distribution generalization problem and contrast it with the standard
supervised learning setup, providing background needed for Chapter 5.

2.1 Shapley Value

Shapley value [18] forms the basis of Shapley Flow (Chapter 3). It stems from cooperative
game theory [20]. In the context of machine learning, it has been extensively used in
feature attribution [14], [21]–[24] and data valuation [25]–[27]. Here we give an overview
of Shapley value and its axioms. Its application in feature attribution is summarized in
Section 2.3.4.

A cooperative game consists of a set of players (P) and a payoff function (v) that as-
signs a value to every possible subset of players (i.e., v : 2P → R). A subset of players is
often referred to as a “coalition” (denoted as C). The goal of Shapley value is to assess the
contribution of each player in P in some “fair” way, as formalized by its axioms. Con-
sider a concrete example in which one wishes to measure the contribution of Alice and
Bob, when they work together to move a table [28]. Here, the players are {Alice, Bob},
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and the payoff function outputs 1 when the table is successfully moved, otherwise 0. A
natural way to quantify Alice’s worth in P is to measure the difference in result with and
without her (i.e., v({Alice, Bob})− v({Bob})), that is Alice’s marginal contribution given
the coalition {Bob}. If only one person is needed to move the table (two people also work
but zero players cannot), then everyone’s marginal contribution is 0 (i.e., nobody gets any
credit). This cannot be fair since they together get the job done. In fact, only when the
coalition grows from zero players to one player does the player gets a marginal contri-
bution of 1. Since the ordering of players is unknown, it is unclear who should get the
credit. To solve the problem, Shapley value considers every possible ordering in which a
coalition can be formed, and averages the marginal contribution of a player for all order-
ings. In our case, Alice’s Shapley value ϕv(Alice) = 0.5

(
v({Alice, Bob})− v({Bob})

)
+

0.5
(

v({Alice})− v({})
)
= 0.5(1− 0) + 0.5(0− 0) = 0.5, averages over the two possible

orderings of Bob moves the table first and Alice moves the table first. In this example,
Bob would have the same Shapley value as Alice. Note that the sum of Shapley value for
all players adds up to the total credit of 1. In general, a player i’s Shapley value, ϕv(i), has
the following form:

ϕv(i) = ∑
C⊆P\{i}

|C|!(|P| − |C| − 1)!
|P|!

(
v(C ∪ {i})− v(C)

)
(2.1)

where “| · |” denotes the cardinality of a set and “!” denotes factorial. The numerator,
|C|!(|P| − |C| − 1)!, is the number of ways a coalition C is followed by i in all orderings.
The denominator, |P|!, is the total number of orderings. Together, the expression denotes
a player i’s marginal contribution when added to a coalition, averaged over all possible
orderings in which a coalition could form.

2.1.1 Shapley Value Axioms

Not only does Shapley value have an intuitive explanation (i.e., average of marginal con-
tribution over all orderings), it is also uniquely defined by four simple axioms. This ax-
iomatic nature of Shapley value makes it less arbitrary compared to alternative credit
assignment metrics such as the last-on -the-bus value (the value added when a player last
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join the group) [28]. The four axioms [18], [23], [28] that Shapley value uniquely satisfies
are:

• Dummy/Null player: ϕv(i) = 0 when v(C ∪ {i}) = v(C)∀C ⊆ P \ {i}.

The dummy player axiom states that if a player’s marginal contribution is 0 for all
orderings of players, it should get 0 credit.

• Efficiency/Full allocation: ∑i∈P ϕv(i) = v(P)− v({}).

The efficiency axiom states that the sum of the values for all players equals to the
difference of values generated by all players and values generated by no players.

• Symmetry/Fairness: ϕv(i) = ϕv(j) when v(C ∪ {i}) = v(C ∪ {j})∀C ⊆ P \ {i, j}.

The symmetry axiom states that if two players have the same marginal contribution
for any coalition, they should be given equal credit.

• Linearity: ϕαu+βv(i) = αϕu(i) + βϕv(i) for any payoff function u, v, any α, β ∈ R,
and any player i ∈ P .

The linearity axiom states that the value assignment function is linear in the payoff
functions. In the context of games, the axiom prevents players from splitting up the
payoff function or combining two payoff functions to get higher payoff because the
credit would have been the same. In the context of model interpretation, it means
that the Shapley value for a linear ensemble model is the same as linearly ensemble
the Shapley value of individual models.

2.2 Causal Graphs

Causal graphs are formal tools used to encode assumptions about how data are gener-
ated. They are graphs associated with structural causal models (SCM), which forms the
foundation of causal inference [29], [30]. Related to this dissertation, we use causal graphs
to a) help understand the direct and indirect effects of features in Chapter 3 and b) formal-
ize the assumptions on shortcuts in Chapter 5. Here, we first introduce graph notations
and then formally define SCM. Our definition follows from Chapter 6 of [30].
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2.2.1 Graph Terminology

A graph G = (V, E) consists of a set of vertices/nodes V and a set of edges E ⊆ V × V
where each edge is a tuple of two vertices in V. We assume edges are directed without
loss of generality (i.e., the edge’s first vertex, referred to as the source of the edge, points
to the second vertex, referred to as the target of the edge). An undirected edge between
nodes i and j can be represented in a graph by including both (i, j) and (j, i) in E. A
directed path in a graph is a list of vertices in V such that every pair of adjacent vertices
in the list are in E. A node i is called a parent of a node j if (i, j) ∈ E (in which case j is
a child of i). A node i is called an ancestor of a node j if there is a directed path from i
to j (in which case j is a descendant of i). A graph is called a directed acyclic graph (DAG)
if for all i ∈ V, i does not have a directed path to itself. A node without any parent is
called a source node. A node without any child is called a sink node. A bijective function
π : {1, · · · , |V|} → {1, · · · , |V|} is called a permutation. For a DAG, G, denoting the all
descendant of a node i as DE(i,G), a permutation π is a topological/causal ordering of G if
π(i) < π(j) whenever j ∈ DE(i,G).

2.2.2 Structural Causal Model

A structural causal model (SCM), as defined in [30], is a tuple (S, PN) consists of a collec-
tion S of d structural assignments

Xj := f j(PA(j), Nj), j = 1, · · · , d (2.2)

where PA(j) ⊆ {X1, · · · , Xd} \ {Xj} are called parents of Xj. PN = PN1,··· ,Nd is a joint
distribution over noise variables that are assumed to be jointly independent. A causal
graph, G = (V, E), is a graphical representation of a SCM. It can be constructed by treating
each Xi as a vertex and forming a directed edge from each of Xi’s parent to Xi. The causal
graph is often assumed to be a DAG [30]. A node i is said to have a direct effect on j if
(i, j) ∈ E. A node i is said to have an indirect effect on j if j ∈ DE(i,G). These notions are
extensively used in Chapter 3, where a causal graph on the input features to a machine
learning model is provided as input for model explanation.
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2.3 Interpretability

Interpretability is the research area in which Shapley Flow (Chapter 3) belongs. There are
no single definition of interpretability or explanability because of the diverse use cases on
what we aim to understand [31]–[33]. For example, we may want to understand how fea-
tures affect the model to either debug it or extract scientific knowledge from it [11], [14],
[34]–[36]. In this scenario, methods such as feature attribution [11], [14] can help us figure
out what features are most important for the prediction task. We may also be interested
in understanding how the data affect the model behavior [25]–[27], [37]. Methods based
on influence functions [37] can identify important training samples that are either noisy
or incorrectly labeled. Alternatively, we may want to understand in which population
does the model work best. Tools that report model performance on different cohorts1 or
requirements to clearly document the intended use case of a model [38] become essential
in order to determine when best to delegate a task to the model [39]. Given this diverse
nature of interpretability, we narrow our scope to focus on a branch of commonly used
model interpretation methods, feature attribution [14], [15], [40]–[46].

In this section, we first give an overview of the field from the angle of whether the
explanation is provided intrinsically by the model or through post-hoc analysis [32], [33],
[47]. Then we dive into feature attribution methods, focusing on those with a game theo-
retic interpretation.

2.3.1 Intrinsic Explanation

Models that provide intrinsic explanations are referred to as inherently “interpretable”
models. They includes methods such as sparse linear models (i.e., model weights deter-
mines feature importance), low depth decision trees (i.e., how the tree split on features
can be visualized as a set of rules), and K Nearest Neighbors (KNN) with small K (i.e., the
most influential data point is the data point that is closest to the sample to be explained).
These models, albeit interpretable, can be limited in their expressive power to achieve
high predictive accuracy. Other inherently interpretable models sidestep the issue by in-
creasing the complexity of the model, often at the cost of reduced interpretability. They

1An example tool would be https://erroranalysis.ai/

11



include Generalized Additive Models (i.e., generalizes linear models to allow per feature
non-linearity) [48], [49], interpretable CNN (i.e., confining convolutional neural network
to match templates for object parts) [50], [51], prototype based models (i.e., each sam-
ple is classified by comparing similarity of the sample to some prototypical examples,
often with similarity measured in some deep embedded space) [47], [52]–[54], and atten-
tion based models (i.e., attention weights are used as an indicator for feature importance)
[55]–[59]. These methods impose strong assumptions on both the form of interpretation
and the form of model architecture, making them less flexible compared to post-hoc inter-
pretation methods in which model training and interpretation are separately considered.

2.3.2 Post-hoc Explanation

When a model does not provide intrinsic interpretation or its intrinsic interpretation does
not match the intended use (e.g., explaining feature importance of a KNN), it can be ex-
plained post-hoc. Post-hoc explanation frees practitioners from juggling interpretation
and other metrics at the same time. Most post-hoc explanation methods can be cat-
egorized into i) feature/concept attribution methods, that attribute model decisions to
salient input features [11], [15], [18], [60] or user defined concepts [51], [61], and ii) sam-
ple based explanation methods, that attribute model decisions to salient training data
[25], [37]. They usually involve perturbing the input or fitting a proxy inherently inter-
pretable model (locally or globally) to mimic the model to explain [11], [14], [62], [63]. This
raises the concern of explanation fragility (e.g., the explanation is not robust to adversar-
ial attack) and fidelity (e.g., the proxy model does not accurately resemble the model to
explain), which are active fields of research [32], [64]–[67].

2.3.3 Feature Attribution

Both intrinsic and post-hoc explanations include methods to attribute importance to fea-
tures. For example, feature importance can be given by the weights of a linear model or
by the drop in performance when a feature is randomly permuted [68]. Formally, given a
model f : Rd → R that takes a set of inputs of dimension d to produces an output, and a
target sample input x ∈ Rd to explain, a feature attribution method quantifies the effect
of each input on the output by producing a real valued attribution vector atri(x; f ) ∈ R
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for i ∈ [1 · · · d]. The magnitude of each attribution, |atri(x; f )|, signals the importance of
the ith feature from x (denoted as xi) for the prediction. Our notation follows from [24].

While there are many feature attribution methods such as DeepLIFT [42], Layer-wise
Relevance Propagation (LRP) [44], Local Interpretable Model-agnostic Explanations (LIME)
[11], and gradient based methods [15], [69], [70], we focus on game theoretic feature at-
tribution [14], [17], [23]. These methods rely on variations of the game theoretic concept,
Shapley value [18], to assign importance to features. Game theoretic feature attribution
methods are often preferable over other baselines because they are grounded on solid
theory with intuitive axioms and are model agnostic (i.e., only assumes the ability to eval-
uate function output given input). These properties are especially attractive as it is hard to
evaluate model interpretation [64], [71]–[73] objectively. For a comprehensive overview
of other feature attribution methods and their evaluation, please refer to [74].

2.3.4 Shapley Value applied to Feature Attribution

As introduced in Section 2.1, Shapley value can be adapted to measure feature impor-
tance [14], [16], [17], [23], [24], [75], [76]. The idea is to view each feature as a player in
the cooperative game, and the payoff function can be defined as the model output given
which features are present. However, unlike the moving table example where a person
is either in C or not (i.e., binary), features can be continuous or discrete. To resolve this
issue, Shapley value based feature attribution methods, along with other popular feature
attribution methods such as DeepLift [42] and Integrated Gradient [15], introduce the
notion of a background or reference sample. The effect of the input to explain (i.e., the
target sample) on the output is measured with respect to the background. For example,
in a healthcare setting, we may set the features in the background sample to values that
are deemed typical for a disease. Now, the presence of a feature can be binary, in which
case a feature can either take on the value of the target sample or the background sample
depending on whether it is in C.

Formally, given a target sample input x, a background sample input x′, and a model
f : Rd → R, Shapley value based feature attribution methods aim to explain the differ-
ence in output i.e., f (x)− f (x′). Note that x and x′ are of the same dimension d, and each
entry can be either discrete or continuous. In the game theoretic language, this means
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we are setting v({}) = f (x′) and v(P) = f (x). We assume a single background value
for notational convenience, but the formalism easily extends to the common scenario
of multiple background values or a distribution of background values, P, by defining
v({}) = Ex′∼P f (x′). However, the payoff function for a non-empty proper subset of P
can be tricky to define [17], [22]–[24], [77]. We discuss common choices in the next section.

2.3.5 Payoff Function Definition

To define the payoff function based on f , one has to consider what is the model output
given a coalition C. One popular approach is to treat features independently [22], [24],
[77]. This approach (referred to as independent SHAP) defines the value of a coalition,
v(C), as f (XC = xC , XC = x′C), where the capitalized letters denote random variables
that are arguments to f , C is the complement set of C (i.e., C = P \ C), and the subscript
index into a sample (e.g., xC denotes all coordinates of x that corresponds to features in
C). Here, features in C take the target sample’s value, and features not in C take the
background sample’s value, directly matching the presence and absence of players. This
notion, while intuitive, can produce unrealistic or invalid sets of model input because
it completely ignores the correlation among features. Consider an example from [23],
when input features contains both the marital status and relationship, one can sample XC
containing “marital status=never married” and XC containing “relationship=husband”,
producing invalid model input.

Recognizing this deficiency, recent work explore modeling feature correlation for at-
tribution, so that each coalition stays on the data manifold [14], [17], [23]. These methods
(referred to as on-manifold SHAP) define the value of a coalition as the expected output of
f given features in C. That is v(C) = Ep(XC=x′C |XC=xC )( f (XC = xC , XC = x′C)|XC = xC).
This conditional expectation is estimated with respect to the training dataset. However,
this can result in situations in which features not used by the model are given non-zero
attribution. For example, given that the presence of dog and frisbee are often correlated,
even if f only functionally depends on frisbee (e.g., the weight for dog is 0 when f is lin-
ear) for a dog detection task, on-manifold SHAP would attribute equal weights to both
features. This is not desirable as a model that actually depends on dog would have the
same attribution, despite this latter model would generalize better in real life.
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TABLE 2.1: A comparison of relevant regularization penalties.

Method Formulation Sparsity Grouping effect

LASSO [78] ∥θ∥1 yes no
l2 [79] 1

2∥θ∥2
2 no yes

elastic net [80] β∥θ∥1 +
1
2(1− β)∥θ∥2

2 yes yes
OWL [81] ∑n

i=1 wi|θ|[i] yes yes
weighted LASSO [82] ∥w⊙ θ∥1 yes yes
weighted l2 [82] 1

2∥w⊙ θ∥2
2 no no

2.3.6 Removing the Symmetry Axiom

Within on-manifold Shapley value based feature attribution methods, the Asymmetric
Shapley Value (ASV) from [23] argues to remove the symmetry axiom. In the author’s
own words, “when redundancies exist in the data, we might instead seek a sparser ex-
planation of the model’s behaviour. Instead of uniformly distributing feature importance
over redundant features, we might instead prefer to concentrate the importance on those
features we deem more fundamental”. Practically, ASV only averages over player order-
ings that are topological orderings of a causal graph (see Section 2.2). In the dog detection
example, if we specify a causal edge pointing from the dog to the frisbee, ASV will trans-
fer credits that would have been given to the frisbee in on-manifold SHAP to the dog,
leaving the frisbee with 0 attribution.

2.4 Parameter Norm Regularization

Understanding parameter norm regularization is the key to understand the EYE penalty
proposed in Chapter 4. Regularization helps reduce overfitting (i.e., discrepancy between
training and generalization performance) [83]. While there are many forms of regulariza-
tion such as data augmentation [84], adversarial training [85], and early stopping [86], we
use the term regularization to refer to parameter norm regularization/penalty [83] as it is
one of the oldest and most commonly used forms of regularization [78]. Parameter norm
regularization can be defined by solving the following optimization problem:
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θ̂ = arg min
θ

L(θ, X, y) + λJ(θ) (2.3)

where L is some loss function and J is a regularization term. θ represents the model
parameters. X are y are the input and target of a dataset. λ ∈ R≥0 is the tradeoff between
loss and the regularization term.

The most common forms of J are the l1 (LASSO) and l2 regularization. Their functional
forms are summarized in Table 2.1. They can be interpreted as placing a prior distribu-
tion on feature weights (i.e., isotropic Laplace distribution for l1 and isotropic Gaussian
distribution for l2) [87]. To understand their properties analytically, consider a simple set-
ting in which L is quadratic in θ with a diagonal Hessian that is positive definite (i.e., a
linear least squares regression problem with an orthogonal design matrix X). Denote the
unregularized optimal solution as θ∗ and the ith diagonal entry of the Hessian matrix as
Hi,i > 0, the ith entry of the l1 regularized solution is θ̂l1

i = sign(θ∗i )max
{
|θ∗i | − λ/Hi,i, 0

}
where the sign function output 1/−1/0 if the input is positive/negative/0, and the ith

entry of the l2 regularized solution is θ̂l2
i =

Hi,i
Hi,i+λ θ∗i . A detailed derivation can be found

in Chapter 7 of [83]. This means that l1 regularization can push a solution to exactly 0
while the l2 regularization only shrinks the solution by a constant factor. The ability to set
weights to exactly zero, referred to as sparsity, is desirable when one wants to perform
feature selection or increase model interpretability by reducing the number of features
presented to human. Thus, many extensions of the LASSO regularization have been pro-
posed, including elastic net [80], ordered weighted LASSO (OWL) [81], adaptive LASSO
[87], weighted LASSO [82], [88], [89], and group LASSO [90].

In Table 2.1, we summarize properties of several common regularization terms rele-
vant to this dissertation. β ∈ [0, 1] is a hyperparameter that controls the tradeoff between
the l1 and l2 norms; w is a set of non-negative weights for each feature; |θ|[i] is the ith

largest parameter sorted by magnitude; and ⊙ is the elementwise product. The sparsity
property refers to whether the penalty would push the weights of some parameters to
exactly zero. The grouping effect refers to whether correlated features will have similar
weights in a linear least squares regression setting [80].
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2.5 Out of Distribution Generalization

In order to safely apply a model, one needs to ensure that the model achieves good per-
formance on both the training distribution and on realistic, out of distribution settings.
In this section, we formalize the out of distribution (OOD) generalization problem in the
supervised learning setting. Then, we will dive into a particular failure mode of OOD
generalization: shortcut learning. This will provide the background needed for Chapter
5. For a comprehensive review of OOD generalization, please refer to [91].

2.5.1 Formalization of OOD Generalization

Formally, denote the feature space asX and the label space asY , X and Y are random vari-
ables with support inX andY respectively. Given a datasetD = {(x(i) ∈ X , y(i) ∈ Y)}n

i=1

of n samples generated from the training distribution Ptr(X, Y), the goal of supervised
learning is to find an optimal model f : X → Y such that it generalizes well to the testing
distribution Pte(X, Y):

arg min
f∈H

EX,Y∼Pte L( f (X), Y) (2.4)

where L : Y × Y → R is a loss function that measures the regret between the predicted
label and the ground truth label, and H is the hypothesis space of f . Traditional learning
methods assume that Ptr = Pte [92]. However, in reality, the distribution that we care
about (i.e., Pte) often differs from the training distribution. In response, the OOD general-
ization problem focuses on the more common setting in which Ptr ̸= Pte. We will refer to
a model that generalizes to Pte as a robust model.

2.5.2 Shortcut Learning

One reason that models struggle in the OOD setting is the existence of shortcuts. “Short-
cuts are decision rules that perform well on standard benchmarks but fail to transfer to
more challenging testing conditions, such as real-world scenarios” [93]. For example,
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Berry et al. (2018) [94] showed that a model can misclassify a cow if it appears in un-
common locations (e.g., beach instead of grassland). Here, location is a shortcut because
it is correlated with the outcome of interest and is easier to learn than recognizing the
cow itself. Note that task easiness is related to the inductive bias of a model (e.g., its ar-
chitecture, optimization procedure, training data, and loss function) and not necessarily
aligned with human intuition. For example, while it is more natural for a human to use
shape than texture to recognize an object, Geirhos et al. (2019) [95] showed that the op-
posite is true for deep neural networks. Similar examples have been reported in object
recognition [95], healthcare [96], image captioning [97], and adversarial training [98]. For
a comprehensive review of shortcut learning, please refer to [93].

Approaches to Mitigate Shortcuts

Mitigating shortcuts requires assumptions because all models fail to generalize if Pte is al-
lowed to differ from Ptr arbitrarily [99]. Shortcut learning approaches place assumptions
on how shortcuts relate Ptr with Pte, usually using a causal graph [9], [100]. Here, we
focus on techniques that do not require samples from Pte. If samples from Pte are avail-
able, either with or without labels, one can apply transfer learning [101] or unsupervised
domain adaptation techniques [102].

When no domain knowledge on shortcuts is available, one can use causal discovery
methods to mine features that are causal ancestors of the output from the data and only
use those features for prediction [103], [104]. By assuming that shortcuts utilize features
that are not causal ancestors of the target, these methods mitigate the use of shortcuts.
The lack of domain knowledge on shortcuts comes with limitations. For example, those
methods cannot handle cases when shortcuts are perfectly correlated with other features
or when shortcuts are correlated with unobserved confounders.

On the opposite end, when shortcuts are known a priori (e.g., through feature attri-
bution and domain knowledge), one can augment the dataset to decorrelate shortcuts
with the target [105]–[109], regularize model parameters to not rely on shortcuts [9],
[110]–[112], or optimize for the worst case error over a family of distributions induced
by changes in shortcuts [113]–[115]. By assuming shortcuts are given, these methods by-
pass an important challenge of shortcut learning: identifying the shortcuts.
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Between the two extremes are methods that exploit indirect knowledge of shortcuts.
Our proposed method in Chapter 5 falls into this category by assuming access to con-
cepts/representations learned from data that are not affected by shortcuts. We defer de-
tailed discussions of this setting to Chapter 5.
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Chapter 3

Shapley Flow

3.1 Introduction

Explaining a model’s predictions by assigning importance to its inputs (i.e., feature at-
tribution) is critical to many applications in which a user interacts with a model to ei-
ther make decisions or gain a better understanding of a system [14], [15], [40]–[46], [116].
However, correlation among input features presents a challenge when estimating feature
importance.

Consider a motivating example adapted from [29], in which we are given a model f
that takes as input four features: the season of the year (X1), whether or not it’s raining
(X2), whether the sprinkler is on (X3), and whether the pavement is wet (X4) and out-
puts a prediction f (x), representing the probability that the pavement is slippery (capital
X denotes a random variable; lower case x denotes a particular sample). Assume, the
inputs are related through the causal graph in Figure 3.1. When assigning feature im-
portance, existing approaches that ignore this causal structure [22], [24], [77] assign zero
importance to the season, since it only indirectly affects the outcome through the other
input variables. However, such a conclusion may lead a user astray - since changing X1

would most definitely affect the outcome.
Recognizing this limitation, researchers have recently proposed approaches that lever-

age the causal structure among the input variables when assigning credit [23], [117].
However, such approaches provide an incomplete picture of a system as they only assign
credit to nodes in a graph. For example, the ASV method of [23] solves the earlier problem
of ignoring indirect or upstream effects, but it does so by ignoring direct or downstream
effects. In our example, season would get all the credit despite the importance of the other
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FIGURE 3.1: Causal graph for the sprinkler example from Chapter 1.2 of [29].
The model, f , can be expanded into its own graph. To simplify the exposition,
although f takes 4 variables as input, we arbitrarily assumed that it only
depends on X3 and X4 directly (i.e., f (X1, X2, X3, X4) = g(X3, X4) for some

g).

variables. This again may lead a user astray - since intervening on X3 or X4 would affect
the outcome, yet they are given no credit. The Causal Shapley values of [117] do assign
credit to X3 and X4, but force this credit to be divided with X1. This leads to the problem
of features being given less importance simply because their downstream variables are
also included in the graph.

Our approach. Given that current approaches end up ignoring or dividing either down-
stream (i.e., direct) or upstream (i.e., indirect) effects, we develop Shapley Flow, a compre-
hensive approach to interpreting a model (or system) that incorporates the causal rela-
tionship among input variables, while accounting for both direct and indirect effects. In
contrast to prior work, we accomplish this by reformulating the problem as one related to
assigning credit to edges in a causal graph, instead of nodes. Figure 3.2 contrasts Shapley
Flow with independent SHAP and ASV on the sprinkler example.

Our key contributions are as follows.

• We propose the first (to the best of our knowledge) generalization of Shapley value
feature attribution to graphs, providing a complete system-level view of a model.
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• Our approach unifies three previous game theoretic approaches to estimating fea-
ture importance.

• Through examples on real data, we demonstrate how our approach facilitates un-
derstanding feature importance.

In this chapter, we take an axiomatic approach motivated by cooperative game theory,
extending Shapley values to graphs. The resulting algorithm, Shapley Flow, generalizes
past work on estimating feature importance [14], [23], [118]. The estimates produced by
Shapley Flow represent the unique allocation of credit that conforms to several natural
axioms. Applied to real-world systems, Shapley Flow can help a user understand both
the direct and indirect impact of changing a variable, generating insights beyond current
feature attribution methods.

Organization. The rest of the chapter is organized as the following. First, we intro-
duce background for feature attribution with a causal graph. Then, we propose Shapley
Flow and show that it is the unique solution to an extension of Shapley value axioms to
graphs. Next, we compare Shapley Flow to baseline methods using both linear and non-
linear models, displaying the pitfalls of previous feature attribution methods. Finally, we
summarize our contribution and motivate future directions.

3.2 Background & Related Work

Given a model, or more generally a system, that takes a set of inputs and produces an
output, we focus on the problem of quantifying the effect of each input on the output.
Here, building off previous work, we formalize the problem setting.

3.2.1 Problem Setup

Quantifying the effect of each input on a model’s output can be formulated as a credit
assignment problem. Formally, given a target sample input x, a background sample input
x′, and a model f : Rd → R, we aim to explain the difference in output i.e., f (x)− f (x′).
We assume x and x′ are of the same dimension d, and each entry can be either discrete or
continuous.
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(A) Independent (B) ASV (C) Shapley Flow

FIGURE 3.2: Top: Output of attribution methods for the example in Figure
3.1. Bottom: Causal structure (black edges) and explanation boundaries used
by each method. As a reference, we copied the true causal links (red) from
Figure 3.1. An explanation boundary B := (D, F) is a cut in the graph that
defines a “model” F (nodes in the shaded area in each figure) to be explained.

Refer to Section 3.2.2 for a detailed discussion.
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We also assume access to a causal graph, as formally defined in Chapter 6 of [30], over
the d input variables. Given this graph, we seek an assignment function ϕ that assigns
credit ϕ(e) ∈ R to each edge e in the causal graph such that they collectively explain the
difference f (x)− f (x′). In contrast with the classical setting [14]–[17] in which credit is
placed on features (ı.e., seeking a node assignment function ψ(i) ∈ R for i ∈ [1 · · · d]),
our edge-based approach is more flexible because we can recover node i’s importance by
defining ψ(i) = ∑e∈i’s outgoing edges ϕ(e). This exactly matches the classic Shapley axioms
[18] when the causal graph is degenerate with a single source node connected directly to
all the input features.

Here, the effect of the input on the output is measured with respect to a background
sample. For example, in a healthcare setting, we may set the features in the background
sample to values that are deemed typical for a disease. We assume a single background
value for notational convenience, but the formalism easily extends to the common sce-
nario of multiple background values or a distribution of background values, P, by defin-
ing the explanation target to be f (x)−Ex′∼P f (x′).

3.2.2 Feature Attribution with a Causal Graph

In our problem setup, we assume access to a causal graph, which can help in reasoning
about the relationship among input variable. However, even with a causal graph, feature
attribution remains challenging because it is unclear how to rightfully allocate credit for
a prediction among the nodes and/or edges of the graph. Marrying interpretation with
causality is an active field (see [119] for a survey). A causal graph in and of itself does not
solve feature attribution. While a causal graph can be used to answer a specific question
with a specific counterfactual, summarizing many counterfactuals to give a comprehen-
sive picture of the model is nontrivial. Furthermore, each node in a causal graph could
be a blackbox model that needs to be explained. To address this challenge, we generalize
game theoretic fairness principles to graphs.

Given a graph, G, that consists of a causal graph over the the model of interest f and
its inputs, we define the boundary of explanation as a cut B := (D, F) that partitions the
input variables and the output of the model (i.e., the nodes of the graph) into D and F
where source nodes (nodes with no incoming edges) are in D and sink nodes (nodes with
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no outgoing edges) are in F. Note that G has a single sink, f (x) ∈ R. A cut set is the set of
edges with one endpoint in D and another endpoint in F, denoted as cut(B). It is helpful
to think of F as an alternative model definition, where a boundary of explanation (i.e., a
model boundary) defines what part of the graph we consider to be the “model”. If we
collapse F into a single node that subsumes f , then cut(B) represents the direct inputs to
this new model.

Depending on the causal graph, multiple boundaries of explanation may exist. Recog-
nizing this multiplicity of choices helps shed light on an ongoing debate in the community
regarding feature attribution and whether one should perturb features while staying on
the data manifold or perturb them independently [24], [77], [120]. On one side, many
argue that perturbing features independently reveals the functional dependence of the
model, and is thus true to the model [22], [24], [77]. However, independent perturbation of
the data can create unrealistic or invalid sets of model input values. Thus, on the other
side, researchers argue that one should perturb features while staying on the data man-
ifold, and so be true to the data [17], [23]. However, this can result in situations in which
features not used by the model are given non-zero attribution. Explanation boundaries
help us unify these two viewpoints. As illustrated in Figure 3.2a, when we indepen-
dently perturb features, we assume the causal graph is flat and the explanation boundary
lies between x and f (i.e., D contains all of the input variables). In this example, since fea-
tures are assumed independent all credit is assigned to the features that directly impact
the model output, and indirect effects are ignored (no credit is assigned to X1 and X2).
In contrast, when we perform on-manifold perturbations with a causal structure, as is
the case in Asymmetric Shapley Values (ASV) [23], all the credit is assigned to the source
node because the source node determines the value of all nodes in the graph (Figure 3.2b).
This results in a different boundary of explanation, one between the source nodes and the
remainder of the graph. Although giving X1 credit does not reflect the true functional
dependence of f , it does for the model defined by F2 (Figure 3.2c). Perturbations that
were previously faithful to the data are faithful to a “model”, just one that corresponds to
a different boundary. See Section A.1 in the Appendix for how on-manifold perturbation
(without a causal graph) can be unified using explanation boundaries.

Beyond the boundary directly adjacent to the model of interest, f , and the boundary
directly adjacent to the source nodes, there are other potential boundaries (Figure 3.2c) a
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user may want to consider. However, simply generating explanations for each possible
boundary can quickly overwhelm the user (Figures 3.2a, 3.2b in the main text, and A.1a in
the Appendix). Our approach sidesteps the issue of selecting a single explanation bound-
ary by considering all explanation boundaries simultaneously. This is made possible by
assigning credit to the edges in a causal graph (Figure 3.2c). Edge attribution is strictly
more powerful than feature attribution because we can simultaneously capture the direct
and indirect impact of edges. We note that concurrent work by [117] also recognized that
existing methods have difficulty capturing the direct and indirect effects simultaneously.
Their solution however is node based, so it is forced to split credit between parents and
children in the graph.

While other approaches to assign credit on a graph exist, (e.g., Conductance from [70]
and DeepLift from [121]), they were proposed in the context of understanding internal
nodes of a neural network, and depend on implicit linearity and continuity assumptions
about the model. We aim to understand the causal structure among the input nodes in
a fully model agnostic manner, where discrete variables are allowed, and no differentia-
bility assumption is made. To do this we generalize the widely used Shapley value [23],
[24], [75], [77], [120], [122], [123] to graphs.

3.3 Methods

Our proposed approach, Shapley Flow, attributes credit to edges of the causal graph. In
this section, we present the intuition behind our approach and then formally show that
it uniquely satisfies a generalization of the classic Shapley value axioms, while unifying
previously proposed approaches.

3.3.1 Assigning Credit to Edges: Intuition

Given a causal graph defining the relationship among input variables, we re-frame the
problem of feature attribution to focus on the edges of a graph rather than nodes. Our
approach results in edge credit assignments as shown in Figure 3.2c. This eliminates the
need for multiple explanations (i.e., bar charts) pertaining to each explanation boundary.
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(A) e2 updates after e1 (B) e2 updates before e1

FIGURE 3.3: Edge importance is measured by the change in output when an
edge is added. When a model is non-linear, say f = OR, we need to average
over all scenarios in which e2 can be added to gauge its importance. Section

3.3.1 has a detailed discussion.

Moreover, it allows a user to better understand the nuances of a system by providing
information regarding what would happen if a single causal link breaks.

Shapley Flow is the unique assignment of credit to edges such that a relaxation of
the classic Shapley value axioms are satisfied for all possible boundaries of explana-
tion. Specifically, we extend the efficiency, dummy, and linearity axioms from [18] and
add a new axiom related to boundary consistency. Efficiency states that the attribution
of edges on any boundary must add up to f (x)− f (x′). Linearity states that explaining
a linear combination of models is the same as explaining each model, and linearly com-
bining the resulting attributions. Dummy states that if adding an edge does not change
the output in any scenarios, the edge should be assigned 0 credit. Boundary consistency
states that edges shared by different boundaries need to have the same attribution when
explained using either boundary. These concepts are illustrated in Figure 3.4 and formal-
ized in Section 3.3.3.

An edge is important if removing it causes a large change in the model’s prediction.
However, what does it mean to remove an edge? If we imagine every edge in the graph
as a channel that sends its source node’s current value to its target node, then removing
an edge e simply means messages sent through e fail. In the context of feature attribu-
tion, in which we aim to measure the difference between f (x)− f (x′), this means that e’s
target node still relies on the source’s background value in x′ to update its current value,
as opposed to the source node’s foreground value in x, as illustrated in Figure 3.3a. Note
that treating edge removal as replacing the parent node with the background value is
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equivalent to the approach advocated by [24], and matches the default behavior of SHAP
and related methods. However, we cannot simply toggle edges one at a time. Consider
a simple OR function g(X1, X2) = X1 ∨ X2, with x1 = 1, x2 = 1, x′1 = 0, x′2 = 0. Remov-
ing either of the edges alone, would not affect the output and both x1 and x2 would be
(erroneously) assigned 0 credit.

To account for this, we consider all scenarios (or partial histories) in which the edge we
care about can be added (see Figure 3.3b). Here, ν is a function that takes a list of edges
and evaluates the network with edges updated in the order specified by the list. For
example, ν([e1]) corresponds to the evaluation of f when only e1 is updated. Similarly
ν([e1, e2]) is the evaluation of f when e1 is updated followed by e2. The list [e1, e2] is also
referred to as a (complete) history as it specifies how x′ changes to x.

For the same edge, attributions derived from different explanation boundaries should
agree, otherwise simply including more details of a model in the causal graph would
change upstream credit allocation, even though the model implementation was unchanged.
We refer to this property as boundary consistency.

3.3.2 Model explanation as value assignments in games

The concept of Shapley value stems from game theory, and has been extensively applied
in model interpretability [14], [21]–[24]. Before we formally extend it to the context of
graphs, we define the credit assignment problem from a game theoretic perspective.

Given the message passing system in Section 3.3.1, we formulate the credit assign-
ment problem as a game specific to an explanation boundary B := (D, F). The game
consists of a set of players PB, and a payoff function νB. We model each edge external to
F as a player. A history is a list of edges detailing the event from t = 0 (values being x′)
to t = T (values being x). For example, the history [i, j, i] means that the edge i finishes
transmitting a message containing its source node’s most recent value to its target node,
followed by the edge j, and followed by the edge i again. A coalition is a partial history
from t = 0 to any t ∈ [0 · · · T]. The payoff function, ν, associates each coalition with a real
number, and is defined in our case as the evaluation of F following the coalition.

This setup is a generalization of a typical cooperative game in which the ordering of
players does not matter (only the set of players matters). However, given our message
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(A) Effi. + Bound. Con-
sist.

(B) Dummy player (C) Linearity

FIGURE 3.4: Illustration of axioms for Shapley Flow. Except for boundary
consistency, all axioms stem from Shapley value’s axioms [18]. Detailed ex-

planations are included in Section 3.3.3.

passing system, history is important. In the following sections, we denote ‘+’ as list con-
catenation, ‘[]’ as an empty coalition, andHB as the set of all possible histories. We denote
H̃B ⊆ HB as the set of boundary consistent histories. The corresponding coalitions for
HB and H̃B are denoted as CB and C̃B respectively. A sample game setup is illustrated in
Figure 3.3.

3.3.3 Axioms

We formally extend the classic Shapley value axioms (efficiency, linearity, and dummy)
and include one additional axiom, the boundary consistency axiom, that connects all
boundaries together.

• Boundary consistency: for any two boundaries B1 = (D1, F1) and B2 = (D2, F2),
ϕνB1

(i) = ϕνB2
(i) for i ∈ cut(B1) ∩ cut(B2)

For edges that are shared between boundaries, their attributions must agree. In
Figure 3.4a, the edge wrapped by a teal band is shared by both the blue and green
boundaries, forcing them to give the same attribution to the edge.

In the general setting, not all credit assignments are boundary consistent; different
boundaries could result in different attributions for the same edge to demonstrate why
considering all historiesH can violate boundary consistency, thus motivating the need to
only focus on boundary consistent histories. This occurs when histories associated with
different boundaries are inconsistent (Figure 3.5). Moving the boundary from B to B∗
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(where B∗ is the boundary with D containing f ’s inputs), results in a more detailed set of
histories. This expansion has 2 constraints. First, any history in the expanded set follows
the message passing system in Section 3.3.1. Second, when a message passes through
the boundary, it immediately reaches the end of computation as F is assumed to be a
black-box.

Denoting the history expansion function into B∗ as HE (i.e., HE takes a history h as
input and expand it into a set of histories in B∗ as output) and denoting the set of all
boundaries asM, a history h is boundary consistent if ∃hB ∈ HB for all B ∈ M such that

(
⋂
B∈M

HE(hB)) ∩ HE(h) ̸= ∅

That is h needs to have at least one fully detailed history in which all boundaries can
agree on. H̃ is all histories in H that are boundary consistent. We rely on this notion of
boundary consistency in generalizing the Shapley axioms to any explanation boundary,
B:

• Efficiency: ∑i∈cut(B) ϕνB (i) = f (x)− f (x′).

In the general case where νB can depend on the ordering of h, the sum is ∑h∈H̃B
νB(h)
|H̃B |
−

νB([]). But when the game is defined by a model function f , ∑h∈H̃B νB(h)/|H̃B | = f (x) and

νB([]) = f (x′). An illustration with 3 boundaries is shown in Figure 3.4a.

• Linearity: ϕαu+βv = αϕu + βϕv for any payoff functions u and v and scalars α and β.

Linearity enables us to compute a linear ensemble of models by independently explaining

each model and then linearly weighting the attributions. Similarly, we can explain f (x)−
E( f (X′)) by independently computing attributions for each background sample x(i)

′
and

then taking the average of the attributions, without recomputing from scratch whenever the

background sample’s distribution changes. An illustration with 2 background samples is

shown in Figure 3.4c.

• Dummy player: ϕνB (i) = 0 if νB(S + [i]) = νB(S) for all S, S + [i] ∈ C̃B for i ∈ cut(B).

Dummy player states that if an edge does not change the model’s output when added to in

all possible coalitions, it should be given 0 attribution. In Figure 3.4b, e2 is a dummy edge

because starting from any coalition, adding e2 wouldn’t change the output.
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FIGURE 3.5: Boundary Consistency. For the blue boundary (upper), we show
one potential history h. When we expand h to the red boundary (lower), h
corresponds to multiple histories as long as each history contains states that
match (i) (ii) and (iii). (i’) matches (i), no messages are received in both states.
(ii’) matches (ii), the full impact of message transmitted through the left edge
is received at the end of computation. (iii’) matches (iii), all messages are
received. In contrast, the history containing (iv’) has no state matching (ii),

and thus is inconsistent with h.

These last three axioms are extensions of Shapley’s axioms. Note that Shapley value
also requires the symmetry axiom because the game is defined on a set of players. For
Shapley Flow values this symmetry assumption is encoded through our choice of an or-
dered history formulation.

3.3.4 Shapley Flow is the unique solution

Shapley Flow uniquely satisfies all axioms from the previous section. Here, we describe
the algorithm, show its formulae, and state its properties. Please refer to Appendix A.2
and A.3 for the pseudo code1 and proof.

Description. Define a configuration of a graph as an arbitrary ordering of outgoing
edges of a node when it is traversed by depth first search. For each configuration, we
run depth first search starting from the source node, processing edges in the order of the
configuration. When processing an edge, we update the value of the edge’s target node
by making the edge’s source node value visible to its function. If the edge’s target node
is the sink node, the difference in the sink node’s output is credited to every edge along

1code can be found in https://github.com/nathanwang000/Shapley-Flow
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the search path from source to sink. The final result averages over attributions for all
configurations.

Formulae. Denote the attribution of Shapley Flow to a path as ϕ̃ν, and the set of all
possible orderings of source nodes to a sink path generated by depth first search (DFS)
as Πdfs. For each ordering π ∈ Πdfs, the inequality of π(j) < π(i) denotes that path
j precedes path i under π. Since ν’s input is a list of edges, we define ν̃ to work on a
list of paths. The evaluation of ν̃ on a list of paths is the value of v evaluated on the
corresponding edge traversal ordering. Then

ϕ̃ν(i) = ∑
π∈Πdfs

ν̃([j : π(j) ≤ π(i)])− ν̃([j : π(j) < π(i)])
|Πdfs|

(3.1)

To obtain an edge e’s attribution ϕv(e), we sum the path attributions for all paths that
contains e.

ϕν(e) = ∑
p∈paths in G

1p contains(e)ϕ̃ν(p) (3.2)

Additional properties. Shapley Flow has the following beneficial properties beyond the
axioms.

• Generalization of SHAP: if the graph is flat, the edge attribution is equal to feature
attribution from SHAP because each input node is paired with a single edge leading
to the model.

• Generalization of ASV: the attribution to the source nodes is the same as in ASV if
all the dependencies among features are modeled by the causal graph.

• Generalization of Owen value: if the graph is a tree, the edge attribution for incom-
ing edges to the leaf nodes is the Owen value [118] with a coalition structure defined
by the tree.

• Implementation invariance: implementation invariance means that no matter how
the function is implemented, so long as the input and output remain unchanged, so
does the attribution [15], which directly follows boundary consistency (i.e., knowing
f ’s computational graph or not wouldn’t change the upstream attribution).
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• Conservation of flow: efficiency and boundary consistency imply that the sum of
attributions on a node’s incoming edges equals the sum of its outgoing edges.

• Model agnostic: Shapley Flow can explain arbitrary (non-differentiable) machine
learning pipelines.

3.4 Experiments & Results

Shapley Flow highlights both the direct and indirect impact of features. In this section,
we consider several applications of Shapley Flow. First, in the context of a linear model,
we verify that the attributions match our intuition. Second, we show how current feature
attribution approaches lead to an incomplete understanding of a system compared to
Shapley Flow. In particular, we seek to answer the following questions:

• Question 1: Does Shapley Flow capture the ground truth direct and indirect effects
of linear models? (Section 3.4.3, Table 3.1)

• Question 2: Does Shapley Flow capture the insights of and beyond the baselines on
non-linear models? (Section 3.4.4, Figure 3.6a)

• Question 3: Why are on-manifold explanations misleading? (Section 3.4.4, Figure
3.6, Figure 3.7a, Figure 3.7b)

3.4.1 Experimental Setup

We illustrate the application of Shapley Flow to a synthetic and a real dataset. In addition,
we include results for a third dataset in the Appendix. Note that our algorithm assumes
a causal graph is provided as input. In recent years there has been significant progress in
causal graph estimation [30], [124]. However, since our focus is not on causal inference,
we make simplifying assumptions in estimating the causal graphs (see Section A.4.2 of
the Appendix for details).
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Datasets. Synthetic: As a sanity check, we first experiment with synthetic data. We cre-
ate a random graph dataset with 10 nodes. A node i is randomly connected to node j
(with j pointing to i) with 0.5 probability if i > j, otherwise 0. The function at each node
is linear with weights generated from a standard normal distribution. Sources follow a
N(0, 1) distribution. This results in a graph with a single sink node associated with func-
tion f (i.e., the ‘model’ of interest). The remainder of the graph corresponds to the causal
structure among the input variables.

National Health and Nutrition Examination Survey: This dataset consists of 9, 932 indi-
viduals with 18 demographic and laboratory measurements [125]. We used the same
preprocessing as described by [76]. Given these inputs, the model, f , aims to predict
survival.

Model training. We train f using an 80/20 random train/test split. For experiments
with linear models, f is trained with linear regression. For experiments with non-linear
models, f is fitted by 100 XGBoost trees with a max depth of 3 for up to 1000 epochs,
using the Cox loss.

Causal Graph. For the nutrition dataset, we constructed a causal graph (Figure A.2a)
based on our limited understanding of the causal relationship among input variables.
This graph represents an oversimplification of the true underlying causal relationships
and is for illustration purposes only. We assigned attributes predetermined at birth (age,
race, and sex) as source nodes because they temporally precede all other features. Poverty
index depends on age, race, and sex (among other variables captured by the poverty in-
dex noise variable) and impacts one’s health. Other features pertaining to health depend
on age, race, sex, and poverty index. Note that the relationship among some features is
deterministic. For example, pulse pressure is the difference between systolic and dias-
tolic blood pressure. We include causal edges to account for such facts. We also account
for when features have natural groupings. For example, transferrin saturation (TS), total
iron binding capacity (TIBC), and serum iron are all related to blood iron. Serum albu-
min and serum protein are both blood protein measures. Systolic and diastolic blood
pressure can be grouped into blood pressure. Sedimentation rate and white blood cell
counts both measure inflammation. We add these higher level grouping concepts as new
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latent variables in the graph. To account for noise in modeling the outcome (i.e., the effect
of exogenous variables that are not used as input to the model), we add an independent
noise node to each node (detailed in Section A.4.2 in the Appendix). The resulting causal
structure is an oversimplification of the true causal structure; the relationship between
source nodes (e.g., race) and biomarkers is far more complex [126]. Nonetheless, it can
help in understanding the in/direct effects of input variables on the outcome.

3.4.2 Baselines

We compare Shapley Flow with other game theoretic feature attribution methods: inde-
pendent SHAP [14], on-manifold SHAP [17], and ASV [23], covering both independent
and on-manifold feature attribution.

Since Shapley value based methods are expensive to compute exactly, we use a Monte
Carlo approximation of Equation 3.1. In particular, we sample orderings from Πdfs and
average across those orderings.We randomly selected a background sample from each
dataset and share it across methods so that each uses the same background. A single
background sample allows us to ignore differences in methods due to variations in back-
ground sampling and is easier to explain the behavior of baselines [127]. To show that
our result is not dependent on the particular choice of background sample, we include an
example averaged over 100 background samples in Section A.5.4 in the Appendix (the
qualitative results shown with a single background still holds). We sample 10, 000 or-
derings from each approach to generate the results. Since there’s no publicly available
implementation for ASV, we show the attribution for source nodes (the noise node asso-
ciated with each feature) obtained from Shapley Flow (summing attributions of outgoing
edges), as they are equivalent given the same causal graph. Since noise node’s credit is
used, intermediate nodes can report non zero credit in ASV.

For convenience of visual inspection, we show top 10 links used by Shapley Flow
(credit measured in absolute value) on the nutrition dataset.

3.4.3 Sanity checks with linear models

To build intuition, we first examine linear models (i.e., f (x) = w⊤x + b where w ∈ Rd

and b ∈ R; the causal dependence inside the graph is also linear). When using a linear
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Methods Nutrition (D) Synthetic (D) Nutrition (I) Synthetic (I)

Independent 0.0 (± 0.0) 0.0 (± 0.0) 0.8 (± 2.7) 1.1 (± 1.4)
On-manifold 1.3 (± 2.5) 0.8 (± 0.7) 0.9 (± 1.6) 1.5 (± 1.5)
ASV 1.5 (± 3.3) 1.2 (± 1.4) 0.6 (± 1.9) 1.1 (± 1.5)
Shapley Flow 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0)

TABLE 3.1: Mean absolute error (std) for all methods on direct (D) and indi-
rect (I) effect for linear models. Shapley Flow makes no mistake across the

board.

model the ground truth direct impact of changing feature Xi is wi(xi − x′i) (that is the
change in output due to Xi directly), and the ground truth indirect impact is defined as
the change in output when an intervention changes x′i to xi. Note that when the model
is linear, only 1 Monte Carlo sample is sufficient to recover the exact attribution because
feature ordering doesn’t matter (the output function is linear in any boundary edges, thus
only the background and foreground value of a feature matters). This allows us to bypass
sampling errors and focus on analyzing the algorithms.

Results for explaining the datasets are included in Table 3.1. We report the mean abso-
lute error (and its variance) associated with the estimated attribution (compared against
the ground truth attribution), averaged across 1, 000 randomly selected test examples and
all graph nodes for both datasets. Note that only Shapley flow results in no error for both
direct and indirect effects.

3.4.4 Examples with non-linear models

We demonstrate the benefits of Shapley Flow with non-linear models containing both
discrete and continuous variables. As a reminder, the baseline methods are not competing
with Shapley Flow as the latter can recover all the baselines given the corresponding
causal structure (Figure 3.2). Instead, we highlight why a holistic understanding of the
system is better.

Independent SHAP ignores the indirect impact of features. Take an example from the
nutrition dataset (Figure 3.6). Independent SHAP gives lower attribution to age com-
pared to ASV. This happens because age, in addition to its direct impact, indirectly affects
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the output through blood pressure, as shown by Shapley Flow (Figure 3.6a). Independent
SHAP fails to account for the indirect impact of age, leaving the user with a potentially
misleading impression that age is less important than it actually is.

On-manifold SHAP provides a misleading interpretation. With the same example as
before (Figure 3.6), we observe that on-manifold SHAP strongly disagrees with indepen-
dent SHAP, ASV, and Shapley Flow on the importance of age. Not only does it assign
more credit to age, it also flips the sign, suggesting that age is protective. However, Fig-
ure 3.7a shows that age and earlier mortality are positively correlated; then how could
age be protective? Figure 3.7b provides an explanation. Since SHAP considers all par-
tial histories regardless of the causal structure, when we focus on serum magnesium and
age, there are two cases: serum magnesium updates before or after age. We focus on the
first case because it is where on-manifold SHAP differs from other baselines (all baselines
already consider the second case as it satisfies the causal ordering). When serum mag-
nesium updates before age, the expected age given serum magnesium is higher than the
foreground age (yellow line above the black marker). Therefore when age updates to its
foreground value, we observe a decrease in age, leading to a decrease in the output (so
age appears to be protective). From both an in/direct impact perspective, on-manifold
perturbation can be misleading since it is based not on causal but on observational rela-
tionships.

ASV ignores the direct impact of features. As shown in Figure 3.6, serum protein ap-
pears to be more important in independent SHAP compared to ASV. From Shapley Flow
(Figure 3.6a), we know serum protein is not given attribution in ASV because its upstream
node, blood protein, gets all the credit. However, looking at ASV alone, one fails to un-
derstand that intervening on serum protein could have a larger impact on the output.

Shapley Flow shows both direct and indirect impacts of features. Focusing on the at-
tribution given by Shapley Flow (Figure 3.6a). We not only observe similar direct impacts
in variables compared to independent SHAP, but also can trace those impacts to their
source nodes, similar to ASV. Furthermore, Shapley Flow provides more detail compared
to other approaches. For example, using Shapley Flow we gain a better understanding
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of the ways in which age impacts survival. The same goes for all other features. This is
useful because causal links can change (or break) over time. Our method provides a way
to reason through the impact of such a change.

More case studies with an additional dataset are included in the Appendix.

3.5 Summary & Conclusions

In this chapter, we extend the classic Shapley value axioms to causal graphs, resulting in
a unique edge attribution method: Shapley Flow. It unifies three previous Shapley value
based feature attribution methods and enables the joint understanding of both the direct
and indirect impact of features. This more comprehensive understanding is useful when
interpreting any machine learning model, both “black box” methods and “interpretable”
methods (such as linear models).

The key message of this chapter is that model interpretation methods should account
for the entire machine learning pipeline to understand the impact of features. As we
demonstrated through experiments, baseline approaches ignore aspects of a model and
can be misleading when accounting for correlation but not causal relationships among
input features. In contrast, Shapley Flow generates more insights about the model than
baselines.

While our approach relies on access to a complete causal graph, Shapley Flow is still
valuable because a) there are well-established causal relationships in domains such as
healthcare and ignoring such relationships can produce confusing explanations; b) recent
advancements in causal estimation are complementary to our work and make defining
these graphs easier; c) finally and most importantly, existing methods already implic-
itly make causal assumptions, Shapley Flow makes these assumptions explicit (Figure
3.2). However, this does open up new research opportunities. Can Shapley Flow work
with partially defined causal graphs? How to explore Shapley Flow attribution when the
causal graph is complex? How sensitive is Shapley Flow to a wrongly specified causal
graph as experts can be wrong? These question are important to answer in order to safely
apply our approach. We leave those questions for future work and offer suggestions to
tackle them in Chapter 6.
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Top features Age Serum Magnesium Serum Protein

Background sample 35 1.37 7.6
Foreground sample 40 1.19 6.5

Attributions Independent On-manifold ASV

Age 0.1 -0.26 0.16
Serum Magnesium 0.02 0.2 0.02
Serum Protein -0.09 0.07 0.0
Blood pressure 0.0 0.0 -0.14
Systolic BP -0.05 -0.05 0.0
Diastolic BP -0.04 -0.07 0.0
Serum Cholesterol 0.0 -0.15 0.0
Serum Albumin 0.0 -0.14 0.0
Blood protein 0.0 0.0 -0.08
White blood cells 0.0 0.11 0.0
Race 0.0 0.09 0.0
BMI -0.0 0.08 -0.0
TIBC 0.0 0.06 0.0
Sex 0.0 -0.05 0.0
TS 0.0 0.05 0.0
Pulse pressure 0.0 -0.05 0.0
Poverty index 0.0 0.04 0.0
Red blood cells 0.0 0.03 0.0
Serum Iron 0.0 -0.02 0.0
Sedimentation rate 0.0 0.0 0.0
Iron 0.0 0.0 -0.0
Inflamation 0.0 0.0 0.0

(A) Shapley Flow

FIGURE 3.6: Comparison among baselines on a sample (top table) from the
nutrition dataset, showing top 10 features/edges.
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(A) Age vs. output (B) Age vs. magnesium

FIGURE 3.7: Age appears to be protective in on-manifold SHAP because it
steals credit from other variables.
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Chapter 4

Credible Model

4.1 Introduction

When features are highly correlated, there exists multiple solutions that can achieve equally
good test performance. Often, however, good performance alone is not enough. These
solutions may vary in other desirable aspects not specified in the training distribution
(i.e., the underspecification problem). For example, in settings such as healthcare, to be
adopted by practitioners, the model must also align at least in part with domain knowl-
edge. In other words, the model needs to be “credible”.

Informally, a credible model is a model that i) provides reasons for its predictions
that are, at least in part, inline with well-established domain knowledge, and ii) does no
worse than other models in terms of predictive performance. While a user is more likely
to adopt a model that agrees with well-established domain knowledge, one should not
have to sacrifice accuracy to achieve such adoption. That is, the model should only agree
with well-established knowledge, if it is consistent with the data. Relying on domain
expertise alone would defeat the purpose of data-driven algorithms, and could result in
worse performance in practice. Admittedly, the definition of credibility is a subjective
matter. In this chapter, we offer a first attempt to formalize the intuition behind a credible
model.

Our Approach. To learn a credible model, we propose the Expert Yielded Estimates
(EYE) penalty. Our proposed approach leverages domain expertise regarding known re-
lationships between the set of covariates and the outcome. This domain expertise is used
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to guide the model in selecting among highly correlated features, while encouraging spar-
sity. Our proposed framework allows for a form of collaboration between the data-driven
learning algorithm and the expert. We prove desirable properties of our approach in the
least squares regression setting. Furthermore, we give empirical evidence of these prop-
erties on synthetic and real datasets. Applied to two large-scale patient risk stratification
tasks, our proposed approach resulted in an accurate model and a feature ranking that,
when compared to a set of well-established risk factors, yielded an average precision (AP)
an order of magnitude greater than the second most credible model in one task, and twice
as large in AP in the other task.

Our key contributions are:

• formalizing the notion of credibility in the linear setting

• proposing a novel regularization term EYE (expert yielded estimates) to achieve this
form of credibility.

Organization. The rest of the chapter is organized as follows. First, we review related
work on variable selection and interpretability. Then, we define credibility and describe
our proposed method in detail. Next, we present experiments and results, demonstrat-
ing that it is possible to align well with expert knowledge without sacrificing accuracy.
Finally, we summarize the importance of our work and discuss the limitation of the pro-
posed method.

4.2 Background & Related Work

Credibility is closely related to interpretability, which has been actively explored in the
literature [11], [21], [128]–[131]. Yet, to the best of our knowledge, credibility has never
been formally studied.

Interpretability is often achieved through dimensionality reduction. Common ap-
proaches include preprocessing the data to eliminate correlation, or embedding a fea-
ture selection criterion into the model’s objective function. Embedding a regularization
term in the objective function is often preferred over preprocessing techniques since it
combines feature selection and training together, often resulting in more accurate models
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(which we show in the Appendix). Thus we focus on regularization techniques in this
work. A review of popular regularization methods are included in Chapter 2 Table 2.1.

In terms of incorporating additional expert knowledge at training time, Sun et al. ex-
plore using features identified as relevant during training, along with a subset of other
features that yield the greatest improvement in predictive performance [132]. This work
differs from ours because they assume expert knowledge as ground truth, a potentially
dangerous assumption when experts are wrong. Vapnik et al. explore the theory of learn-
ing with privileged information [133]. Though similar in setting, they use expert knowl-
edge to accelerate the learning process, not to enforce credibility. Helleputte and Dupont
use partially supervised approximation of zero-norm minimization (psAROM) to create
a sparse set of relevant features. Much like weighted LASSO, psAROM does not exhibit
the grouping effect, thus is unable to retain all known relevant features. Moreover, the
non-convex objective function for psAROM makes exact optimization hard [134]. [135]
looks at utilizing hierarchical expert information to learn embeddings that help model
prediction of rare diseases. While it is an interesting approach, its model’s interpretabil-
ity is questionable. [110] constrains the input gradient of features that are believed not to
be relevant in a neural network. In the linear setting, the method simplifies to l2 regular-
ization on unknown features, which is suboptimal for model interpretability because the
learned weights are dense.

Perhaps closest to our proposed approach, and the concept of credibility, is related
work in interpretability that focuses on enforcing monotonicity constraints between the
covariates and the prediction [136]–[140]. The main idea behind this branch of work is to
restrict classifiers to the set of monotone functions. This restriction could be probabilistic
[137] or monotone in certain arguments identified by experts [136], [139], [140]. Though
similar in aim (having models inline with domain expertise), previous work has focused
on rule based systems. Other attempts to enforce monotonicity in nonlinear models [141]–
[143] aim to increase performance. Again, relying too heavily on expert knowledge may
result in a decrease in performance when experts are wrong. In contrast, we propose
a general regularization technique that aims to increase credibility without decreasing
performance. Moreover, in the linear setting, credible models satisfy monotonicity and
sparsity constraints.
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4.3 Methods

In this chapter, we focus on linear models. Within this setting, we start by formally defin-
ing credibility in 4.3.1. Then, building off of a naïve approach in 4.3.2, we introduce our
proposed approach in 4.3.3. In 4.3.4, we state important properties and theoretical results
relevant to our proposed method.

4.3.1 Definition and Notation

Interpretability is a prerequisite for credibility. For linear models, interpretability is often
defined as sparsity in the feature weights. Here, we define the set of features as D. We
assume that we have some domain expertise that identifiesK ⊆ D, a subset of the features
as known (or believed) to be important. Intuitively, among a group correlated features a
credible model will select those in K, if the relationship is consistent with the data.

Consider the following unconstrained empirical risk minimization problem.

θ̂ = arg min
θ

L(θ, X, y) + nλJ(θ, r) (4.1)

where L is some loss function and J is a regularization term. X is an n by d design matrix,
where row x corresponds to one observation. The corresponding entry in y ∈ Rn is
the target value for x. Let vi denote the ith entry of a vector v. λ ∈ R≥0 is the tradeoff
between loss and regularization, and r ∈ {0, 1}d is the indicator array where ri = 1 if
i ∈ K and 0 otherwise. Note that our setting differs from the conventional setting only
through the inclusion of r in the regularization term. For theoretical convenience, we
prove theorems in the least squares regression setting and denote θ̂

OLS as the ordinary
least squares solution. For experiments, we use logistic loss.

We denote θ as the true underlying parameters. Then θK and θD\K are the true param-
eters associated with the subset of known and unknown features, respectively. Through-
out the text, vectors are in bold, and estimates are denoted with a hat.

Definition A linear model is credible if
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1. Within a group of correlated relevant features C ⊆ D: θ̂K∩C is dense, and θ̂C\K is
sparse (structure constraint).

2. Model performance is comparable with other regularization techniques (performance
constraint)

Consider the following toy example where |C| = 2 and one of these features has been
identified ∈ K by the expert, while the other has not. One could arbitrarily select among
these two correlated features, including only one in the model. To increase credibility, we
encourage the model to select the known feature (i.e., the feature in K)

We stress relevant in the definition because we do not care about the structure con-
straint if the group of variables does not contribute to the predictive performance. We
assume expert knowledge is sparse compared to all features; thus a credible model is
sparse due to the structure requirement. Credible models will result in dense weights
among the known features, if the expert knowledge provided is indeed supported by the
data. If experts are incorrect, i.e., the set of features K are not relevant to the task at hand,
then credible models will discard these variables, encouraging sparsity.

4.3.2 A Naïve Approach to Credibility

Intuitively, one may achieve credibility by constraining weights for known important
factors with the l2 norm and weights for other features with the l1 norm. The l2 norm will
maintain a dense structure in known important factors and the l1 norm will encourage
sparsity on all remaining covariates. Formally, this penalty can be written as q(θ) =

(1− β)∥r⊙ θ∥2
2 + 2β∥(1− r)⊙ θ∥1 where θ ∈ Rd, β ∈ (0, 1) controls the tradeoff between

weights associated with the features in K and in D \ K.
Unfortunately, q does not encourage sparsity in θ̂D\K. Figure 4.1a shows its contour

plot. For a convex problem, each level set of the contour corresponds to a feasible region
associated with a particular λ. A larger level value implies a smaller λ. It is clear from the
figure that this penalty is non-homogeneous, that is f (tx) ̸= |t| f (x). In a two-dimensional
setting, when the covariates perfectly correlate with one another, the level curve for the
loss function will have a slope of −1 corresponding to the violet dashed lines in Figure
4.1.
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To understand why the slope must be −1, consider the classifier y = θKx1 + θD\Kx2.
Since x1 and x2 are perfectly correlated by assumption, we have y = (θK + θD\K)x1. Note
that the loss value is fixed as long as θK+ θD\K is fixed, which means that each level curve
of the loss function has the form θK + θD\K = c for some scaler c, i.e., θD\K = −θK + c.
Thus, the slope of the violet lines must be −1 in Figure 4.1.

By the KKT conditions, with λ > 0, the optimal solution (red dots for each level curve
in Figure 4.1) occurs at the boundary of the contour with the same slope (λ = 0 means
the problem is unconstrained, then all methods are equal). We observe that with small λ,
the large constraint region forces the model to favor features not in K because the point
on the boundary with slope of −1 occurs near θD\K axis, leading to a model that is not
credible.

4.3.3 The Expert Yielded Estimates (EYE) Penalty

To address this sensitivity to the choice of hyperparameter, we propose the EYE penalty,
obtained by fixing a level curve of q and scaling it for different contour levels. The trick
is to force the slope of level curve in the positive quadrant to approach −1 as θD\K ap-
proaches 0. Note that since q is symmetric around both axes, we can just focus on one
“corner”. That is, we want the “corner” on the right of the level curve to have a slope of
−1, so that θ̂ hits it in the perfectly correlated case. In fact, as long as −1 ≤ the “corner”
slope ≤ 0, we achieve the desired feature selection. In the extreme case of slope 0 (β = 1),
we do not penalize θK at all. Using a slope with a magnitude smaller than 1 assumes that
features in K are much more relevant than other features, thus biasing θ̂K. Since we do
not wish to bias θ̂K towards larger values, if the solution is inconsistent with the data, we
keep the slope as −1. This minimizes the effect of our potential prejudices, while main-
taining the desirable feature selection properties. Casting our intuition mathematically
yields the EYE penalty:

eye(x) = inf
{

t > 0 | x ∈
{

tx | q(x) ≤ β2

1− β

}}
(4.2)
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FIGURE 4.1: Visualization of selected regularization penalties. Dashed violet
lines denote level sets for the loss function when features are perfectly corre-
lated; red dots are the optimal points for each feasible region. A large feasible
region (level sets with large labeled values) corresponds to a small λ. (a) The
naïve penalty (β = 0.5) favors θD\K as the feasible region grows. (b) EYE
consistently favors θK. (c) When r = 0.5, EYE produces a contour plot similar
to elastic net. Setting r = 0.5 represents a situation in which two features i
and j are equally “known” and perfectly correlated. In this setting, θ̂i = θ̂j

(i.e., highly correlated known factors have similar weights)

where t is a scaling factor to make EYE homogeneous and the inner set defines the level
curve to fix. Note that β only scales the EYE penalty, thus can rewrite the penalty as:

eye(θ) = ∥(1− r)⊙ θ∥1 +
√
∥(1− r)⊙ θ∥2

1 + ∥r⊙ θ∥2
2 (4.3)

Derivations of (4.2) and (4.3) are included in the Appendix. Figure 4.1b shows the contour
plot of EYE penalty (note that the optimal solution for each level set occurs at the “corner”
as desired).

4.3.4 EYE Properties

In this section, we give theoretical results for the proposed EYE penalty. We include
detailed proofs in the Appendix. While the first three properties are general, the last three
properties are valid in the least squares regression setting, i.e., Loss(θ, X, y) = 1

2∥y− Xθ∥2
2.

We focus on the least square regression setting because a closed form solution exists,
though our method is applicable to the classification setting as well (demonstrated in
section 4.4).
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• EYE is a norm: This comes for free as Equation (4.2) is an atomic norm [144], thus,
convex.

• EYE is β free: Similar to elastic net and the naïve penalty q, EYE is a combination
of the l1 and l2 norms, but it omits the extra parameter β. This leads to a quadratic
reduction in the hyperparameter search space for EYE compared to elastic net and
q.

• EYE is a generalization of LASSO, l2 norm, and “elastic net”: Setting r = 1 and 0, we
recover the l2 norm and LASSO penalties, respectively. Relaxing r from a binary
valued vector to a float valued vector, so that r = 0.5, we get the elastic net shaped
contour (Figure 4.1c). Elastic net is in quotes because the contour represents one
particular level set, and elastic net is non-homogeneous.

• EYE promotes sparse models: Assuming X⊤X = I, the solution to EYE penalized least
squares regression is sparse.

• EYE favors a solution that is sparse in θ̂D\K and dense in θ̂K: In a setting in which co-
variates are perfectly correlated, θ̂D\K will be set to exactly zero. Conversely, θ̂K has
nonzero entries. Moreover, the learned weights will be the same for every entry
of θ̂K (e.g., Figure 4.1c). This verifies the first part of the structure constraint. We
also note that when the group of correlated features are all in D \ K, the objective
function reverts back to LASSO, so that the weights are sparse, substantiating the
second part of the structure constraint.

• EYE groups highly correlated known factors together:

If θ̂i θ̂j > 0 and the design matrix is standardized, then

|r2
i θ̂i−r2

j θ̂j|
Z ≤

√
2(1−ρ)∥y∥2

nλ + |ri − rj|
(

1 + ∥(1−r)⊙θ̂∥1
Z

)

where ρ is the sample covariance between xi and xj, and

Z =
√
∥(1− r)⊙ θ̂∥2

1 + ∥r⊙ θ̂∥2
2

.
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This implies that when ri = rj ̸= 0

|θ̂i − θ̂j|
Z

≤
√

2(1− ρ)∥y∥2

r2
i nλ

i.e., the more correlated known important factors are, the more similar their weights
will be. This is analogous to the grouping effect.

4.4 Experiments & Results

In this section, we empirically verify EYE’s ability to yield credible models through a se-
ries of experiments. We compare EYE to a number of other regularization penalties across
a range of settings using both synthetic and real data. In particular, we are interested in
answering the following questions:

• Question 1: What are limitations of the naïve penalty? (Section 4.4.3, Figure 4.2a,
Figure 4.2b)

• Question 2: Are EYE regularized models more credible than baselines under differ-
ent feature correlations? (Section 4.4.3, Figure 4.3a)

• Question 3: Are EYE regularized models more credible than baselines under differ-
ent percentage of known important factors? (Section 4.4.3, Figure 4.3b)

• Question 4: Are EYE regularized models able to recover from mistakes in known
important factors? (Section 4.4.3 and Table 4.1 for synthetic dataset, Table 4.2 sec-
ond to last line for real datasets)

• Question 5: Are EYE regularized models more credible than baselines on large scale
clinical datasets? (Section 4.4.4, Section 4.4.5, Table 4.2)
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4.4.1 Measuring Credibility

Criterion (i): density in the set of known relevant features and sparsity in the set of
unknown. In a two dimensional setting, we measure log | θK

θD\K
| as a proxy for desirable

weight structure (the higher the better). In a high-dimensional setting, highly correlated
covariates form groups. For each group of correlated features, if known factors exist and
are indeed important, then the shape of the learned weights should match r in the corre-
sponding groups. E.g., given two correlated features x1 and x2 that are associated with
the outcome, if r1 = 0 and r2 = 1, then θ1 = 0 and θ2 ̸= 0. Thus, to measure credi-
bility, we use the symmetric KL divergence, symKL(θ̂g

′
, r′) = 1

2

(
KL(θ̂g

′∥r′) + KL(r′∥θ̂g
′
)
)

,
between the normalized absolute value of learned weights and the normalized r for each
group g. For groups of relevant features that do not contain known factors, the learned
weights should be sparse (i.e., all weight should be placed on a single feature within the
group). Thus, we report minx∈one hot vectors symKL(x, θ̂

′
) for such groups. As symKL decreases,

the credibility of a model increases. Note that symKL only measures the shape of weights
within each group of correlated features and does not assume expert knowledge is correct
(e.g., all weights within a group could be near zero).

In our experiments on real data, we do not know the true underlying θ and the parti-
tion of groups. In this case, we measure credibility by computing the fraction of known
important factors in the top n features sorted by the absolute feature weights learned by
the model. We sweep n from 1 to d and report the average precision (AP) between |θ̂| and
r.

Criterion (ii): maintained classification performance. Recall that we want to learn
a credible model without sacrificing model performance. That is, there should be no
statistically significant difference in performance between a credible model and the best
performing one (in this case, we focus on best linear models learned using other regu-
larization techniques). We measure model performance in terms of the area under the
receiver operating characteristic curve (AUC). In our experiments, we split our data into
train, validation, and test sets. We train a model for each hyperparameter and bootstrap
the validation set 100 times and record performance on each bootstrap sample. We want
a model that is both accurate and sparse (measured using the Gini coefficient due to its
desirable properties [145]). To ensure accuracy, for each regularization method, we re-
move models that are significantly worse than the best model in that regularization class
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using the validation set bootstrapped 100 times (p value set at .05). From this filtered set,
we choose the sparsest model and report criteria (i) and (ii) on the held-out test set.

4.4.2 Experimental Setup and Benchmarks

We compare EYE to the regularization penalties in Table 2.1 across various settings. We
exclude ridge from our comparisons, because it produces a dense model. In addition, we
exclude adaptive LASSO because it requires an additional stage of processing.

We set the weights, w, in Table 2.1, to mimic the effect of the r. This gives a subset
of the regularization techniques according to the same kind of expert knowledge that our
proposed approach uses. In weighted LASSO and weighted ridge, the values in wD\K
were swept from 1 to 3 times the magnitude of the values in wK to penalize unknown
factors more heavily. For OWL, we set the weights in two ways. In the first case, we only
penalize |θ̂|[1], effectively recovering the l∞ norm. In the second case, weights for the m
largest entries in θ̂ are set to be twice the magnitude of the rest, where m is the number
of known important factors. Note that a direct translation from known factors to weights
is not possible in OWL, since the weights are determined based on the learned ordering.
We implemented all models as a single layer perceptron with a softmax trained using the
ADADELTA algorithm [146] minimizing the logistic loss.

4.4.3 Validation on Synthetic Datasets

To test EYE under a range of settings, we construct several synthetic datasets 2. In all
experiments, we generate the data and run logistic regression with EYE and each regular-
ization benchmark. In all of our experiments on synthetic data, we found no statistically
significant differences in AUC, thus satisfying the performance constraint. These exper-
iments expose the limitations of the naïve penalty, measure sensitivity to noise and to
correlation in covariates, explore different shapes of r, and examine the effect of the ac-
curacy of expert knowledge on credibility. In all cases, the EYE penalty leads to the most
credible model, validating our theoretical results.

2code available at https://github.com/nathanwang000/credible_learning
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Limitations of the Naïve Penalty: Sensitivity to Hyperparameters

The naïve penalty q appears to be a natural solution for building credible linear models.
However, since q is non-homogeneous, as the constraint region grows, the models begin
to prefer features not inK. Since small λ corresponds to a large constraint region, we vary
λ to expose this undesirable behavior.

We sample 100 data points uniformly at random from −2.5 to 1.5 to create v. We set
X = [v, v] to produce two perfectly correlated features with one known factor. We set
θ = [1, 1] (note that since the two features are perfectly correlated, it doesn’t matter how
θ is assigned), and assign the label y as 1θ⊤x>0(x) for each data point x.

Figure 4.2a shows the log ratio for credibility for different settings of λ and β. First
note that as λ approaches zero, the log ratio approaches 0 for all methods because the
models are effectively unconstrained. With nontrivial λ and large β, both EYE and the
naïve penalty result in high credibility. This is expected as a large β will constrain known
important factors less, thus placing more weight on them. For β in the lower range, the
log ratio is negative because the naïve penalty penalizes known features more. For β in
the middle range, the log ratio varies from credible to non-credible, exhibiting the artifact
of non-homogeneity (the penalty contour is elongated along θK as λ decreases, thus again
favoring XD\K). Since we want the log ratio> 0 for all nontrivial λ, the naïve penalty with
β < 0.8 fails.

The naïve penalty with large β also fails to produce credible models because the result-
ing models have worse classification performance. In particular, when β > 0.8, the naïve
penalty overemphasizes the relevancy of known important factors. As shown in Figure
4.2b, the naïve penalty with large β performs considerably worse in terms of accuracy
than EYE for large λ. On small λ, their performance are comparable. This is expected
because EYE introduces less bias towards known important factors.

Varying the Degree of Collinearity

We can show theoretically that EYE results in a credible model when features are highly
correlated. However, the robustness of EYE in the presence of noise is unknown. To
explore how EYE responds to changes in correlation between features, we conduct an
experiment in a high-dimensional setting.
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FIGURE 4.2: A comparison of the naïve penalty and EYE. (a) EYE meets the
structural constraint better than naïve penalty with small and mid-ranged β

(b) EYE has better performance than naïve Penalty with large β.
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FIGURE 4.3: Comparisons of EYE with other methods under various settings
(a) EYE leads to the most credible models in all correlations. (b) EYE leads to

the most credible model for all shapes of r.
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We generate 10 groups of data, each having 30 features, with 15 in K. We assigned
each group a correlation score from 0 to 0.9 (here, we exclude the perfectly correlated case
as it will be examined in detail in the next experiment). Intra-group feature correlations
are fixed to the group’s correlation score, while inter-group feature correlations are 0.

Figure 4.3a plots the symKL for each group. Moving from left to right, the correlation
increases in step size of 0.1 from 0 to 0.9. As correlation increases, the EYE regularized
model achieves the smallest symKL, and becomes the most credible model. In comparison,
the other approaches do not achieve the same degree of credibility though, weighted
LASSO and weighted ridge do exhibit a similar trend. However, since weighted LASSO
fails to capture denseness in known important factors and weighted ridge fails to capture
sparseness in unknown features, EYE leads to a more credible model. As correlation
increases, LASSO actually produces a less credible model (as expected).

Varying Percentage of Known Important Factors

Besides varying correlation, we also vary the percentage of known important factors
within a group of correlated features. We observe that EYE is consistently better than
other methods.

In this experiment, we generate groups of data Ci where i = 0, ..., 10, each having 10
features. Features in each group are perfectly correlated, and features across groups are
independent. Each group has a different number of features in K, e.g., group 0 has 0
known relevant factors and group 10 has 10 known important factors.

Figure 4.3b plots the symKL for each group of features. The groups are sorted by |Ci ∩
K|. When |Ci ∩ K| = 0, the model should be sparse. Indeed, for group 0, we observe that
EYE, LASSO, and weighted LASSO do equally well (EYE in fact degenerates to LASSO in
this case), closely followed by elastic net. Weighted ridge and OWL, on the other hand,
do poorly since they encourage dense models. For other groups, EYE penalty achieves
the best result (lowest symKL). This can be explained by property 4.3.4 as EYE sets the
weights the same for correlated features in K while zeroing out weights in D \ K. Again,
LASSO performed the worst overall because it ignores r and is sparse even when r is
dense.

54



Varying Accuracy of Expert Knowledge

The experiments above only test cases where θ is elementwise positive and where expert
knowledge is correct (i.e., the features identified by the expert were indeed relevant). To
simulate a more general scenario in which the expert may be wrong, we use the following
generative process:

1. Select the number of independent groups, n ∼ Poisson(10)

2. For each group i in n groups

(a) Sample a group weight, w(i) ∼ Normal(0,1)

(b) Sample the number of features, m(i) ∼ Poisson(20)

(c) Sample known important factor indicator array, r(i) ∼ Bernoulli(0.5)m(i)

(d) Assign true relevance θ(i) ∈ Rm(i)
by distributing w(i) according to r(i) (e.g., if w(i) = 3

and r(i) = [0, 1, 1], then θ(i) = [0, 1.5, 1.5])

3. Generate covariance matrix C such that intra-group feature correlation=0.95 and inter-group

feature correlation=0

4. Generate 5000 i.i.d. samples xi ∈ R∑n
i=1 m(i) ∼ Normal(0, C)

5. Choose label yi ∼ Bernoulli(sigmoid(θ⊤xi)) where θ is the concatenated array from θ(i)

Generating data this way covers cases where expert knowledge is wrong as feature
group relevance and r are independently assigned. It also allows the number of features
and weights for each group to be different. Table 4.1 summarizes performance and cred-
ibility for each method averaged across 100 runs. EYE achieves the lowest sum of symKL

for each group of correlated features. In terms of AUC, the best models for each penalty
are comparable, confirming that EYE is able to recover from the expert’s mistakes.

4.4.4 Application to a Real Clinical Prediction Task

After verifying desirable properties in synthetic datasets, we apply EYE to a large-scale
clinical classification task. In particular, we consider the task of identifying patients at
greatest risk of acquiring an infection during their hospital stay. We selected a task from
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TABLE 4.1: EYE leads to the most credible model on a synthetic dataset (mean
± stdev)

Method ∑n
g=1 symKLg AUC

EYE 0.442 ± 0.128 0.900± 0.044
wLASSO 0.929± 0.147 0.898± 0.044
wridge 1.441± 0.241 0.899± 0.045
LASSO 2.483± 0.440 0.898± 0.044
elastic net 2.673± 0.399 0.893± 0.044
OWL 3.125± 0.329 0.900± 0.044

TABLE 4.2: EYE leads to the most credible model on both the C. difficile and PhysioNet Challenge datasets; it
keeps more of the factors identified in the clinical literature, while performing on par with other regulariza-
tion techniques; it also has very sparse weights, second only to the model that just uses features in the risk

factors

C. difficile PhysioNet Challenge

Method AP AUC sparsity+ AP AUC sparsity+

expert-features-only 1∗ 0.598 0.998 1∗ 0.754 0.877
EYE 0.204 0.753 0.980 0.671 0.815 0.794
wLASSO 0.033 0.764 0.884 0.300 0.810 0.824
LASSO 0.032 0.760 0.856 0.131 0.823 0.779
wridge 0.031 0.768 0.755 0.209 0.810 0.069
elastic net 0.031 0.754 0.880 0.153 0.818 0.649
EYE-random-r 0.031 0.748 0.936 0.589 0.792 0.779
OWL 0.028 0.548 0.544 0.108 0.794 0.046
+ percentage of near-zero feature weights, where near-zero is defined as < 0.01 of the largest absolute feature

weight
* expert-features-only logistic regression trivially achieves AP of 1 simply because it only uses expert features

healthcare since credibility is critical to ensuring the safe adoption of such models. We
focus on predicting which patients will acquire a Clostridium difficile infection (CDI), a
particularly nasty healthcare-associated infection. Using electronic health record (EHR)
data from a large academic US hospital, we aim to learn a credible model that produces
accurate daily estimates of patient risk for CDI.

The Dataset. We consider all adult hospitalizations between 2010 and 2015. We ex-
clude hospitalizations in which the patient is discharged or diagnosed with CDI before
the 3rd calendar day, since we are interested in healthcare-acquired infections (as opposed
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to community-acquired). Our final study population consists of 143, 602 adult hospital-
izations. Cases of CDI are clinically diagnosed by positive laboratory test. We label a
hospitalization with a positive laboratory test for CDI as +1, and 0 otherwise. 1.09% of
the study population is labeled positive.

The Task. We frame the problem as a prediction task: the goal is to predict whether or
not the patient will be clinically diagnosed with CDI at some point in the future during
their visit. In lieu of a single prediction at 24 hours, we make predictions every 24 hours.
To generate a single AUC given multiple predictions per patient, we classify patients as
high-risk if their risk ever exceeds the decision threshold, and low-risk otherwise. By
sweeping the decision threshold, we generate a single receiver operating characteristic
curve and a single AUC in which each hospitalization is represented exactly once.

Feature Extraction. We use the same feature extraction pipeline as described in [147].
In particular, we extract high-dimensional feature vectors for each day of a patient’s ad-
mission from the structured contents of the EHR (e.g., medication, procedures, in-hospital
locations etc.). Most variables are categorical and are mapped to binary features. Contin-
uous features are either binned by quintiles or well-established reference ranges (e.g., a
normal heart rate is 60-100 beats per minute). If a feature is not measured (e.g., missing
vital), then we explicitly encode this missingness. Finally, we discard rare features that
are not present in more than .05% of the observations. This feature processing resulted in
4,739 binary variables. Of these variables, 264 corresponded to known risk factors. We
identified these variables working with experts in infectious disease who identified key
factors based on the literature [148]–[150].

Analysis. We train and validate the models on data from the first five years (n=444, 184
days), and test on the held-out most recent year (n=217, 793 days). Using the training
data, we select hyperparameters using a grid search for λ and β from 10−10 to 1010 and
0 to 1 respectively. The final hyperparameters are selected based on model performance
and sparsity as detailed in section 4.4.1.
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For each regularization method, we report the AUC on the held-out test set, and the
average precision (AP) between |θ̂| and r (see Section 4.4.1). Table 4.2 summarizes the
results on the test set with various regularizations.

Relative to the other common regularization techniques, EYE achieves an AP that is an
order of magnitude higher, while maintaining good predictive performance. Moreover,
EYE leads to one of the sparsest models, increasing model interpretability.

For comparison, we include a model based on only the 264 expert features (trained
using l2 regularized logistic regression) “expert-features-only.” This baseline trivially
achieves AP of 1, since it only uses expert features, but performs poorly relative to the
other tasks. This confirms that simply retaining expert features is not enough to solve
this task.

In addition, we include a baseline, “EYE-random-r”, in which we randomly permuted
r. This corresponds to the setting where the expert is incorrect and is providing informa-
tion about features that may be irrelevant. In this setting, EYE achieves a high AUC and
low AP. This confirms that EYE is not severely biased by incorrect expert knowledge.
Moreover, we believe this to be a feature of the approach, since it can highlight settings in
which the data and expert disagree.

4.4.5 Application to PhysioNet Challenge Dataset

To further validate our approach, we turn to a publicly available benchmark dataset from
PhysioNet [151]. In this task, the goal is to predict in-hospital mortality using EHR data
collected in intensive care units (ICUs). Similar to above using the EYE penalty we trained
a model and evaluated it in terms of predictive performance, average precision (AP), and
model sparsity.

The Dataset. We use the ICU data provided in the PhysioNet Challenge 2012 [152] to
train our model. This challenge utilizes a subset of the MIMIC-III dataset. We focus on
this subset rather than using the entire dataset, since the goal is not to achieve state-of-
the-art in in-hospital mortality prediction, but simply to evaluate the performance of the
EYE penalty. The challenge data consist of three sets, each set containing data for 4000
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patients. In our experiments, we use set A, since it is the only publicly labeled subset. We
split the data randomly, reserving 25% as the held-out test set.

The Task. Using data collected during the first two days of an ICU stay, we aim to pre-
dict which patients survive their hospitalizations, and which patients do not. In contrast
to the C. difficile task, here, we make a single prediction per patient at 48 hours.

Feature Extraction. The PhysioNet challenge dataset has considerably fewer features
relative to the earlier task. In total, for each patient the data contain four general descrip-
tors (e.g., age) and 37 time-varying variables (e.g., glucose, pH, etc.) measured possibly
multiple times during the first 48 hours of the patient’s ICU stay. We describe our feature
extraction process below. Since again the goal was not state-of-the-art prediction on this
particular task, we performed standard preprocessing without iteration/optimization.

We represent each patient by a vector containing 130 features. More specifically, for
each time-varying variable we compute the maximum, mean, and minimum over the 48
hour window, yielding 111 features. In addition, for each of the 15 time-varying vari-
ables used in the Simplified Acute Physiology Score (SAPS-I) [153] we extract the most
abnormal value observed within the first 24 hours,based on the SAPS scoring system.
We concatenate these 126 features along with the 4 general descriptors producing a final
vector of length 130. Out of the 130 variables, we consider the 15 SAPS-I variables along
with age as expert knowledge. SAPS-I is a scoring system used to predict ICU mortality
in patients greater than the age of 15 and thus corresponds to factors believed to increase
patient risk.

Analysis. Using the training data, we select hyperparameters in the same way we did
earlier. As with the previous experiment on the C. difficile dataset, for each regularization
method, we report both AUC and AP on the held-out test set for this task. Again, we
compared the model learned using the EYE penalty to the other baselines. Table 4.2
summarizes our results on the held-out test set.

Overall, we observed a similar trend as to what we observed for the C. difficile dataset.
Compared to the other common regularization techniques, EYE achieves significantly
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higher AP and results in a sparse model. In terms of discriminative performance it per-
forms on par with the other techniques. Again, we see that a model based on the ex-
pert features alone (i.e., expert-features-only) performs worse than the other regularization
techniques. However, the difference in performance is not as striking as it was earlier.
This suggests that perhaps the additional features (beyond the 16 SAPS-I features) do not
provide much complementary information. Interestingly, the model using randomly per-
muted r (“EYE-random-r”) achieves high AUC and AP. We suspect this may be due to the
amount of collinearity present in the data. The non-expert and expert features are highly
correlated with one another and thus both subsets are predictive (i.e., supported by the
data).

Besides regularization, another way to learn a credible model is to preprocess the input
to exclude non-expert identified features that are highly correlated with expert identified
features. It thus requires setting a threshold on the correlation between expert features
and non-expert features to exclude the latter. However, this approach ignores each fea-
ture’s relationship with the target variable, and thus may be less accurate compared to an
EYE regularized model when the threshold is set to match the latter’s level of alignment
with experts (e.g., measured by AP). We describe this baseline and include its results in
Appendix B.1. As expected, we observe that this baseline is less accurate compared to an
EYE regularized model to achieve an AP above 0.5 (AUROC of 0.760 vs 0.815). When we
exclude less features by increasing the threshold, the accuracy of this approach increases
at the cost of lowered AP (e.g., AUROC of 0.789 and AP of 0.26 when the correlation
threshold is set at 0.8).

4.5 Summary & Conclusions

In this chapter, we presented a formal definition of credibility in a linear setting. We
proposed a regularization penalty, EYE, that encourages such credibility. Our proposed
approach incorporates domain knowledge about which factors are known (or believed)
to be important. Our incorporation of expert knowledge results in increased credibility,
encouraging model adoption, while maintaining model performance. Through a series of
experiments on synthetic data, we showed that sparsity inducing regularization such as
LASSO, weighted LASSO, elastic net, and OWL do not always produce credible models.
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In contrast, EYE produces a model that is provably credible in the least squares regression
setting, and one that is consistently credible across a variety of settings.

Applied to two large-scale patient risk stratification tasks, EYE produced a model
that was significantly better at highlighting known important factors, while maintain-
ing predictive performance comparable with other regularization techniques. Moreover,
we demonstrated how the proposed approach does not lead to worse performance when
the expert is wrong. This is especially important in a clinical setting, where some rela-
tionships between variables and the outcome of interest may be less well-established.

This work debunks the notion that credibility comes at the cost of accuracy and pro-
vides a tool for researchers to correct confusing model reasoning with domain knowledge.
However, there are several important limitations of the proposed approach. For example,
we focused on a linear setting and one form of expert knowledge that can be expressed
in the input space. In reality, many models are non-linear and not all expert knowledge
can be expressed as a binary vector on input features. We address these limitations in
part by extending credible learning to neural networks and incorporating non-input level
domain knowledge in Chapter 5. Moreover, soliciting inputs from experts can be time
consuming, in Chapter 6, we give pointers for future work to address those limitations.
Finally, we do not claim EYE to be the optimal approach to yield credibility (we give no
proof of that). Compared to other regularization penalties considered in this chapter, EYE
introduces the least amount of bias, while striving to attain credibility.
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Chapter 5

Concept Credible Model

5.1 Introduction

In addition to credibility (Chapter 4), we also want a model to perform well in out of
distribution settings. In practice, machine learning models often fail to generalize under
distribution shift despite having good performance in the training distribution [6], [154]–
[156]. One of the mechanisms that lead to lack of robustness to distribution shift is short-
cut learning [111], [155], [156]. “Shortcut learning occurs when a predictor relies on input
features that are easy to represent (i.e., shortcuts) and are predictive of the outcome in
the training data, but do not remain predictive when the distribution of inputs changes”
[111]. For example, consider building a machine learning model to predict the severity
of knee osteoarthritis from X-ray images [19]. If people with mobility problems in the
training set are more likely to have an X-ray acquired using a particular type of mobile
X-ray scanner, the model may learn to rely on features that arise from the type of scanner
to make a prediction, resulting in a failure to generalize when patients are scanned by a
different scanner.

More formally, consider the causal graph in Figure 5.1, where Y is the target of interest
(e.g., diagnosis), S is the shortcut (e.g., scanner type), X is the input (e.g., X-ray image), C
and U are representations that can be inferred from X but are not causally affected by
S. Here, the dashed bidirectional arrow denotes a spurious correlation that holds during
training but not at test time. Solid arrows denote causal relationships that are robust to
changes. Note that S only affects the part of the input that is irrelevant for the diagnosis
(X′), making it causally irrelevant for the prediction. We will consider both settings where
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FIGURE 5.1: We formalize shortcut learning with a causal graph: Y is the
label (e.g., disease diagnosis) and X is the input (e.g., radiograph). X can
be decomposed into causally relevant and irrelevant features (X∗ and X′),
meaning that changing X∗ changes the label whereas changing X′ does not.
X∗ can be further decomposed into known and unknown relevant concepts
(C and U). The node surrounding U and C abstracts their interaction (e.g.,
they can be correlated). A shortcut variable S changes X′ and is correlated
with U and C. Observed variables are colored in gray. Dashed/solid edges
represent correlation that is broken/unaffected under distribution shifts. We

aim to eliminate model dependence on S.

S is and is not correlated with U. In our example, C could be known radiological risk
factors, and U could be unknown radiological risk factors for the disease.

To mitigate a model’s reliance on S, one can use existing tools if S is observed (e.g.,
through model interpretation) [110], [111]. However, these methods do not apply when
shortcuts are unknown prior to the occurrence of distribution shifts. Moreover, such ap-
proaches fail when the spurious correlation is strong (i.e., more convincing shortcuts). In
such scenarios, we need additional guardrails. Our approach considers the setting in
which we do not have direct knowledge of S, but have access to a representation, C,
that is invariant to S (formally defined in Section 5.3.1). It is true that without knowing
S, we cannot truly confirm whether C is invariant to it. However, in practice, we can rely
on established domain knowledge such as risk factors for disease to not encode shortcuts.
By exploiting this representation C, we mitigate the reliance on shortcuts.

Where does C come from? C arises from domain knowledge and can be elicited in a
number of different ways. For example, C may be elicited using transfer learning. Using
domain knowledge, experts can identify a related source task. Predictive features (i.e.,
learned representation) from the related source task (i.e., C) can be shared to predict Y
[155]. Alternatively, if one has auxiliary concept labels, one can train a model to predict
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the presence of concepts and use these predictions as C [19]. In fact, both [19] and [155]
have shown that relying on C alone can outperform a standard model (i.e., a state of the
art model) in the presence of shortcuts.

However, depending solely on C, referred to as a concept bottleneck model (CBM)
[19], ignores potentially unknown concepts (i.e., U). When U contains additional useful
information, relying solely on C results in inferior predictive performance.

Our Approach. To tackle this problem, we propose two approaches based on concept
credible models (CCM). The first approach, CCM RES, while simple, is susceptible to a
particular failure case when U is correlated with S. The second approach, CCM EYE,
extends the EYE penalty from Chapter 4 to address those issues. The EYE penalty was
proposed for linear models as a way to increase the alignment with expert knowledge
(in our case C) without sacrificing predictive performance. Here, we hypothesize that the
same idea can mitigate the use of shortcuts. We thus extend the EYE penalty to work with
non-linear models by applying it to the learned representation/concept space. This is a
nontrivial application of the EYE penalty since here the concept space is not equivalent to
the input space. Moreover, we identify the conditions in which CCM RES and CCM EYE
mitigate learning shortcuts.

Our key contributions are as follows.

• We propose the idea of learning concept credible models (CCM), in which C is not
required to be directly represented in the input space. We demonstrate that CCMs
are more robust to shortcuts compared to existing approaches.

• Unlike previous work on shortcut learning, we show that our approaches still apply
when shortcuts are perfectly correlated with other features, and address the limita-
tion of existing methods that rely solely on C in making predictions.

• Theoretically, we identify the sufficient conditions under which a CCM can elimi-
nate shortcuts for the setting considered in Figure 5.1.

• Empirically, we demonstrate that our approach can still help mitigate shortcuts even
when these conditions are violated.
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Organization. The rest of the chapter is organized as follows. First, we review related
work on concept bottleneck models, shortcut learning, and credible learning. Then, we
define our assumptions and describe our proposed methods in detail. Next, we present
experiments and results, demonstrating that our proposed approaches can mitigate short-
cuts even when assumptions are violated. Finally, we summarize the importance of our
work and suggests potential extensions of the proposed method.

5.2 Background & Related Work

The idea of “concept credible models” is connected to multiple fields in ML.
Connection to shortcut learning. Shortcut learning is a particular failure mode that arises
due to distribution shifts [113], [154]. However, to date researchers have typically as-
sumed shortcuts are known a priori. Under such settings, one can augment the dataset
to decorrelate shortcuts with data [105]–[109] or regularize model parameters to not rely
on shortcuts [9], [110], [111]. In contrast, we do not assume that we know S. This change
makes approaches such as IRM [113] and REx [114] no longer applicable, because with-
out knowing S, it is hard to specify the family of distributions to which a model should
be robust. The above methods also will not work when shortcuts and robust features are
perfectly correlated because without prior knowledge, they cannot be separated apart.
Connection to concept bottleneck models. The concept bottleneck model (CBM) was
proposed in [19] with the goal of making a model’s decision more transparent by only
using C for prediction. While this can mitigate shortcuts since the model is forced to rely
on C instead of spurious correlations, it ignores unknown concepts, often resulting in
lower accuracy compared to a standard model [51]. We address this problem by adding
a channel that takes X as input, in addition to predicting Y from C. This added channel
enables CCM to learn U, resulting in better accuracy.
Connection to credible learning. Credible models are trained by regularizing a model’s
feature attribution to be close to expert identified features (i.e., features known to be rele-
vant for the prediction), in addition to being accurate [13], [157]. While credible learning
has been shown to work well in a transfer learning setup within natural language pro-
cessing [157], we are the first to study its applicability to mitigate the effects of shortcut
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learning. However, unlike previous work, we do not require domain knowledge (i.e., con-
cepts) to be expressed directly in the input space. This provides us with greater flexibility
in exploring different types of inputs in which it may be difficult to collect domain exper-
tise (e.g., the pixel value of images). As a result, our approach does not require models to
be linear.

We note that the EYE penalty was originally introduced as a method to encourage
credible learning. By using it as a regularizer to discourage shortcut learning, we draw a
connection between credible learning and robustness.

5.3 Methods

We formalize the setup of the problem, lay out assumptions, and propose methods to
learn concept credible models.

5.3.1 Preliminaries

To simplify the exposition, we illustrate the setup for a regression problem. The setting,
however, is easily adaptable to multi-class classification. We capitalize random variables
and bold vectors. For example, x denotes an instance of the random vector X. We denote
the Pearson correlation between two random variables as corr(·, ·).

Setup & Assumptions

Given a dataset D = {(x(i) ∈ Rd, y(i) ∈ R)}n
i=1 of n samples generated according to

Figure 5.1 and a function fc : Rd → Rc such that C := fc(X), we aim to learn an accurate
prediction from X to Y ( f : Rd → R) that is invariant to the unknown shortcut S. Here,
c and d are dimensionality for C and X respectively.

Although we assumed that fc is given in this setup, we can also learn it from a related
dataset (e.g., predictive features for this related task). Note that this does not require direct
knowledge of S. It is sufficient to know, for example, that the shortcut for the target task
is unlikely to be a shortcut for the related task.

In this chapter, invariance refers to counterfactual invariance from [9] (Definition 1.1).
Adapting their notation, let X(s) denote the counterfactual X we would have seen had S
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been set to s, leaving all else fixed, f is counterfactually invariant to S if f (X(s)) = f (X(s′))
almost everywhere, for all s, s′ in the sample space of S. This invariance ensures general-
ization of the model regardless of the shortcut’s distribution. Note that invariance is not
the same as independence. For example, scanner type does not cause the diagnosis (i.e.,
diagnosis is invariant to scanner type) yet they can be correlated.

We require two assumptions about C. The first is implied by the causal graph, while
the second is not.

• A1: C is counterfactually invariant to S

For example, changing the scanner type does not change the occurrence of a bone
spur in an X-ray image. Thus the presence of bone spur is invariant to the scan-
ner type. Without this assumption, even a model that only uses C may indirectly
depend on S.

• A2: S is redundant given C (i.e., Y ⊥⊥ S|C)

For example, given bone spur and other radiological findings from an X-ray im-
age, the type of scanner is irrelevant in predicting arthritis severity. Without this
assumption, including S improves the accuracy.

Since both A1 and A2 are not testable without knowing S, in experiments, we test
our methods’ sensitivity to each assumption empirically. Note that we do not make any
assumption regarding the correlation between S and U.

Existing Approaches

We formally introduce common methods that are typically used in this prediction setting.

• Standard Model: Standard model refers to the task specific state-of-the-art model
trained with loss L with empirical risk minimization:

arg min
fSTD

∑
i∈[1,··· ,n]

L( fSTD(x(i)), y(i))

Such a model cannot distinguish among C, U, and S, thus is vulnerable to rely on
shortcuts for prediction.
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• Concept bottleneck model: Our proposed approach builds off of CBM [19]. With
our notation, a CBM’s prediction can be written as fCBM(X) = fy( fc(X)). Here, fy

maps from C to Y and is trained using empirical risk minimization:

arg min
fy

∑
i∈[1,··· ,n]

L( fCBM(x(i)), y(i))

When U contains additional information useful in predicting Y given C, CBM is less
accurate than a standard model.

A motivating example

To build intuition, consider the following linear regression example in which C and S
are perfectly correlated during training (i.e., C = S in D) while C and U are not. Given
X = [C, S, U] and Y = C + U, a least squares linear regression solution gives a prediction
of Ŷ = (1− t)C + U + tS (derived in the Appendix). The free parameter t ∈ R results
from the spurious correlation between C and S.

The minimum L2 norm solution of this problem results in t = 0.5 and will fail to gen-
eralize when the correlation between S and C no longer holds at test time. In contrast,
if we only use C for prediction (i.e., CBM), the solution will not achieve a loss of 0 since
it ignores U. Furthermore, in cases where C and U are correlated, CBM is asymptoti-
cally biased due to omitting the variable U [158]. This means that models that ignore U,
such as CBM, cannot recover the true regression coefficients even as the training set size
approaches infinity.

5.3.2 Proposed Approaches: Concept Credible Models

We introduce two approaches to learn a concept credible model with the goal of mitigat-
ing shortcuts: CCM RES and CCM EYE.

CCM RES

The limitation of CBM stems from its inability to infer U from X. To address this limi-
tation, we design a two stage approach, CCM RES, that first fits a CBM on the dataset,
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and then fits a residual model fx based on the difference between Y and the output of the
CBM. This idea is similar in spirit to boosting methods. fx enables CCM RES to learn U.
CCM RES obtains its prediction by adding the output from fx to the output of the CBM:

fRES(x) = fCBM(x) + fx(x) (5.1)

When CBM achieves small training loss (e.g., the difference between Y and CBM’s pre-
diction is small), CCM RES does not have to rely on information other than C. Otherwise,
CCM RES relies on fx to make up for what C alone cannot learn. We learn CCM RES with
empirical risk minimization:

f̂RES = arg min
fx

∑
i∈[1,··· ,n]

L( fRES(x(i)), y(i)) (5.2)

Applied to Example 5.3.1, when U is independent from S inD, the resulting model not
only achieves 0 empirical loss, but also has 0 reliance on S, achieving our goal of accuracy
without relying on shortcuts. We generalize this motivating example to all linear models
below.

To highlight the strength of CCM RES compared to previous approaches, we consider
the worst case scenario where |corr(C, S)| = 1. In this case, the system is under-specified
(i.e., allowing multiple minimum loss solutions), and a standard model may not be con-
sistent with the causal DAG. Previous approaches fail in such scenarios since they cannot
distinguish C from S.

Consistency of CCM RES: If fRES is linear (both fCBM and fx are linear), X = [C, S, U],
Y = aC + bU + ϵ with a, b ∈ R and a zero mean error ϵ, |corr(C, S)| = 1 on the training
distribution PXY, and U ⊥⊥ S,

arg min
fRES

Ex,y∼PXY(y− fRES(x))2

recovers the true parameters without relying on S (i.e., weight a for C, b for U, and 0 for
S).

Proof. We first show that the residual is independent of S, thus fitting to the residual will
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not use S. From U ⊥⊥ S and |corr(C, S)| = 1, we know U ⊥⊥ C. Fitting on infinite data
with squared loss simplifies fCBM to E(Y|C) = E(aC + bU + ϵ|C) = aC + bE(U|C) =

aC + bE(U). The residual, Y −E(Y|C) = b(U −E(U)) + ϵ, is independent of S because
U ⊥⊥ S. Thus the prediction is aC + bU, recovering the true parameters.

Remark: As the |corr(S, C)| decreases, the system may no longer be under-specified,
and both CCM RES as well as a standard model are expected to be consistent. This hap-
pens when S is not a linear combination of C and U, in which case the minimum loss
solution is unique. If, however, S is a function of U, we cannot distinguish S from U and
thus cannot guarantee the consistency of CCM RES.

This result shows that a linear CCM RES, unlike a linear CBM, is a consistent estimator.
However, while CCM RES enables learning unknown concepts, it fails when S and U
are correlated because the residual can be estimated as a linear combination of U and S,
making fx vulnerable to encoding a shortcut. We address this problem with a second
approach.

CCM EYE

In our second approach, we utilize the EYE regularization from [13] to learn a concept
credible model (CCM EYE). The EYE penalty penalizes reliance on features that are cor-
related with C but not in C. We propose to apply EYE regularization on the concept space
(i.e., the learned representation space) as follows:

fEYE(x) = θ⊺x fx(x) + θ⊺c fc(x) (5.3)

where fc computes the known relevant representation C and fx computes a representation
from the last layer of a standard model. This transformation from x to fx(x) allows the
model to be non-linear. θx and θc are coefficients for fx(x) and fc(x) respectively. We then
apply the EYE regularization on those parameters:

f̂EYE = arg min
θx,θc

∑
i∈[1,··· ,n]

L( fEYE(x(i)), y(i)) + λJ([θx, θc]) (5.4)
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Here, J([θx, θc]) = ∥θx∥1 +
√
∥θx∥2

1 + ∥θc∥2
2 is the EYE regularization applied to our

setting and λ ∈ R≥0 is a hyperparameter that controls the trade-off between regulariza-
tion and loss. The EYE penalty more strictly penalizes θx compared to θc, allowing the
norm of θc to be larger and hence encouraging the model to rely on C. Conversely, J dis-
courages the use of X, which include both U and S. If U is in fact important in predicting
Y, the minimization of the loss encourages the use of U more than S because of A2: U has
more predictive power compared to S given C.

We choose λ such that θx is strictly regularized without sacrificing in-distribution per-
formance (i.e., performance under the biased training distribution). We do so by picking
the largest λ such that the model’s accuracy on the validation set is not statistically worse
than that of a standard model. We say that a model has statistically worse performance
compared to the standard model if its empirical 95% bootstrapped confidence interval
over the performance metric falls below the performance of the standard model. This en-
sures that CCM EYE maximizes the use of C without sacrificing predictive performance.

Similar to CCM RES, CCM EYE is a consistent estimator even when |corr(C, S)| = 1.
The remark for CCM RES applies to CCM EYE as well.

Consistency of CCM EYE: If fEYE is linear, X = [C, S, U], Y = aC + bU + ϵ with
a, b ∈ R and a zero mean error ϵ, |corr(C, U)| ̸= 1 and |corr(C, S)| = 1 on the training
distribution PXY,

arg min
fEYE

Ex,y∼PXY(y− fEYE(x))2 + λJ([θx, θc])

recovers the true parameters (i.e., weight a for C, b for U, and 0 for S) with standardized
input, where λ is chosen as described before from PX,Y.

Proof. With infinite data, the empirical loss is the in-distribution generalization loss, there-
fore λ is chosen such that the generalization loss is minimized. In the worst case scenario,
the perfect correlation between S and C makes this linear problem underspecified (i.e.,
multiple solutions), which means λ is non-zero because it is set to be the largest value
such that model performance is not statistically worse than a standard model trained on
PX,Y. Fixing the same loss, the EYE penalty places zero weight on standardized features
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(features normalized to zero mean and unit variance) that are perfectly correlated with ex-
pert identified features [13]. Treating C as the expert identified feature, the coefficient for
S is thus 0. Combined with the fact that C and U are not perfectly correlated, to achieve
the minimum loss, the coefficients for C and U must be a and b respectively.

Remark: Unlike CCM RES, the consistency of CCM EYE no longer requires U ⊥⊥ S.
Intuitively, EYE can separate U from S because of A2: U is needed in addition to C to be
accurate, yet S is not needed given C. Note that |corr(S, C)| = 1 does not imply U ⊥⊥ S
because U can be correlated with C, which in turn is correlated with S.

While our theoretical results on linear models are restrictive, they a) serve as a sanity
check and b) hint at what we might expect with more complex models as their last layers
are often linear (e.g., neural networks). We also note that the additive structure of both
CCM RES and CCM EYE does not restrict their expressive power as fx can be arbitrarily
complex, capturing the interactions between C and U.

5.4 Experiments & Results

In this section, we verify CCM’s robustness to spurious correlations on three tasks using
publicly available datasets. The first is an image classification task similar to the one
examined by [19]. This task demonstrates the superior performance of CCM when C is
complex and non-linear in X. The second task is the prediction of pulmonary edema
from chest radiographs. It demonstrates CCM’s effectiveness in a critical domain where
accuracy and robustness are needed. We include an additional task to predict in-hospital
mortality in the Appendix.

We start with a setting in which our assumptions hold (Section 5.3.1), and then re-
lax our assumptions to stress test our methods. We evaluate on both biased and unbi-
ased/clean data (defined in the evaluation section of each task) to explore the effects of a
distribution shift caused by the shortcut. All models are trained and selected using only
the biased dataset (e.g., the dataset where corr(S, Y) ̸= 0). We are interested in answering
the following questions:
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• Question 1: Can CCMs mitigate shortcuts when A1 and A2 hold? (Table 5.1)

• Question 2: Can CCMs mitigate shortcuts when A1 breaks? (Figure 5.2)

• Question 3: Can CCMs mitigate shortcuts when A2 breaks? (Figure 5.3)

• Question 4: Can CCMs mitigate shortcuts when A1 and A2 break? (Figure 5.4)

Baselines. We compare CCM with the following methods:

• STD(X) is a model trained end-to-end on the biased dataset [159], using X to predict
Y. We expect it to learn S because there is a backdoor path from S to Y in Figure 5.1.

• Concept bottleneck model (CBM) removes STD(X)’s reliance on S by only fitting
on C [19]. However, CBM lacks the ability to infer U and thus may sacrifice discrim-
inative performance before and after shortcut induced distribution shifts. Following
[19], we train a CBM by fitting a logistic regression model on top of C.

• STD(C, X) is a standard model that conditions both on X and C for prediction.
On the one hand, we expect this baseline to be more robust than STD(X) when S
breaks because it has an easy access to C. On the other hand, conditioning on X
gives the baseline the ability to infer U, unlike CBM. However, when S is highly
correlated with C, this baseline can still rely on S to make a prediction. While there
are many ways to implement STD(C, X), we implement this baseline as a special
case of CCM EYE with λ = 0. This allows us to clearly demonstrate the effect of
EYE regularization on model robustness.

5.4.1 Experiments on the CUB dataset

The Caltech-UCSD Birds-200-2011 dataset (CUB) consists of 11, 788 images of birds [160]
each belonging to one of 200 species (Y). In addition to the images, the dataset also
contains 312 binary attributes/concepts (e.g., beak color) describing birds in each image.
Following [19], we filter out concepts with noisy annotations. We then train a standard
model to predict those concepts from X, with random Gaussian noise N(0, 0.12) added to

73



the image. The resulting prediction is treated as C. Note that no shortcut is introduced in
obtaining C, in order to satisfy A1. We will later test breaking this assumption.

The shortcut we consider here is the level of noise, σ, on an image. We will correlate σ

with bird species to mimic a setting in reality where some birds have noisier photos than
others because they are harder to observe in the wild. Ideally, a model should be able to
classify the birds regardless of the noise level.

To introduce σ as a shortcut, we correlate it with bird classes in the training dataset.
However, we do not correlate σ with Y directly because it violates A2 (a setting we explore
in the Appendix). Instead, we correlate σ to Y through C, using the function below.

1: function BIAS(X)
2: ss← LINSPACE(0, 0.1, nσ) ▷ Create different levels of σ
3: if Uniform(0, 1) < T then
4: σ← ss[arg max(CBM(X)) mod nσ] ▷ Correlate σ with predicted Y
5: else
6: σ← randomChoice(ss)
7: end if
8: return X + N(0, σ2) ▷ Add class specific noise to input
9: end function

The algorithm starts by uniformly spacing nσ levels of noise between 0 and 0.1 (line 2).
Setting nσ to 200 would be equivalent to each bird species having its own level of noise.
To simulate a more realistic setting, we arbitrarily set nσ = 10, allowing multiple birds to
share a noise level. We show in the Appendix that varying nσ does not affect our results.
We then use modular arithmetic to ensure that each of the 200 bird types gets mapped
onto one of the 10 noise levels. Then with probability T, we correlate σ with the bird class
predicted from an oracle model CBMO. CBMO is similar to the CBM baseline explained
above, with the exception that it has oracle access to a noise free dataset at training time
(line 3-4) 1. By using predictions from CBMO rather than the true labels, we ensure that
σ contains information about Y through C. We test breaking this assumption later. Then
with probability 1− T, we break the correlation between σ and Y by randomly choosing
a noise level (line 5-6). Finally we return an image with shortcut.

1We note that CBMO is not a valid baseline as it is trained on the clean dataset, while all baselines are
trained on the biased dataset. It simply serves as an approach to satisfy A2.
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TABLE 5.1: On the CUB dataset, when A1 and A2 hold,
CCM is no worse than baselines on the biased dataset
(column 1), and is better than baselines on the clean
dataset (column 2). Empirical 95% confidence inter-

vals are included in parentheses.

Method Test Acc (biased) Test Acc (clean)

CCM EYE 76.0 (75.0, 77.2) 75.2 (74.1, 76.5)
CCM RES 75.6 (74.2, 76.9) 76.0 (74.8, 77.2)
STD(X) 75.7 (74.7, 77.0) 55.8 (54.7, 57.3)
CBM 71.6 (70.4, 72.9) 72.8 (71.7, 73.9)
STD(C,X) 76.0 (74.7, 77.2) 69.7 (68.6, 70.8)

The choice of T determines how biased the training dataset is (i.e., the correlation
between S and Y), with T = 1 being the most biased and T = 0 being not biased. To
ensure that the shortcut is easy to learn, we keep T = 1 for all experiments except when
we explore CCM’s sensitivity to assumptions, described later.

Model Training. Following [19], all methods use an Inception V3 architecture [159] ini-
tialized using the Imagenet dataset [161]. We divide the training set predefined in the
CUB dataset into train and validation set with a 80/20 random split, and use the prede-
fined test set for evaluation. We report the performance on this test set as the result for
unbiased/clean dataset. We then add class dependent noise described earlier to the train,
validation and the test set to form the biased dataset. All methods are trained on the train-
ing set of this biased dataset using SGD with learning rate of 0.01, momentum of 0.9, and
batch size of 32. We apply 10−4 weight decay to each model and decay the learning rate
every 15 epochs. For CCM EYE, we tune λ in the range of [10−2, 10−3, 10−4, 10−5, 10−6].

Evaluation. Recall that our goal is to learn an accurate model without using S. We gen-
erate the biased and the clean test set as described in the model training section above.
Evaluating on the biased test set demonstrates how the model performs when S is cor-
related with Y. Evaluating on the clean test set demonstrates how the model performs
without image noise (i.e., the shortcut no longer exists). A model that does not rely on S
should perform similarly on both datasets. We measure performance on the CUB dataset
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using accuracy (ACC) as bird classes are balanced. Empirical 95% confidence intervals
are reported based on bootstrapped samples from the test set.

Results. We examine the results when A1 and A2 hold/break. We also explore varying
λ in the Appendix to justify its choice.

How does CCM perform when A1 and A2 are satisfied? The test accuracy results in Ta-
ble 5.1 show that both CCM RES and CCM EYE are no worse than baselines when tested
on the biased dataset (first column), but are significantly better than baselines when S is
removed (second column). In contrast, STD(X) performs well on the biased dataset but
underperforms on the clean dataset, indicating its reliance on S. As expected, CBM does
not rely on the shortcut as its performance is stable with and without S. However, its
inability to utilize U results in a drop in accuracy compared to others. Finally, STD(C, X)
is accurate on the biased dataset and improves over STD(X) on the clean dataset because
it encourages the model to use C. However, CCM EYE dominates, suggesting that condi-
tioning on both C and X is not enough to remove model reliance on S.

How does CCM perform when A1 is violated? We relax A1 by learning C on a biased
dataset. Specifically, we use the BIAS function introduced in Section 5.4.1 but vary the
probability of correlating S with Y (i.e., varying the parameter T). Figure 5.2 shows the
results of varying T on the test accuracy in the clean data. As before, CCM dominates the
other baselines except at T = 1, indicating that unless C is extremely corrupted with S,
CCM performs well compared to the other models. We note that STD(X) does not change
with T because it does not use C. In the Appendix, we show that all methods except CBM
perform similarly well on the biased dataset.

How does CCM perform when A2 is violated? We relax A2 in two ways: a) S contains
information outside of C but within U (i.e., Y ⊥⊥ S|C, U), and b) S contains information
outside of C and U (i.e., Y ̸⊥⊥ S|C, U).

To violate A2, S can no longer be redundant given C. To achieve this, we first intro-
duce a correlation between S and C as before (to satisfy A1) and then we randomly replace
columns in C with Gaussian noise N(0, 1), but keep S the same. This procedure correlate
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FIGURE 5.2: Model performance under the clean test set when violating A1.
When C is learned using a biased dataset (sweeping T on the horizontal axis),
we violate A1. Unless C is extremely corrupted (e.g., T = 1), CCM performs

relatively well.

S with U because the swapped out information becomes unknown concepts based on
which S is generated. The more concepts swapped for noise, the less informative C be-
comes, increasing the relative value of S in predicting Y. For example, when 100 random
dimensions of C are replaced with noise, a linear model trained with (C, S) significantly
outperforms a model based on just C.

This concept swapping greatly affects CBM because it relies solely on C, which is
corrupted. When S is removed (Figure 5.3), both CCM EYE and CCM RES outperform
baselines until all concepts are corrupted (in which case CCM performs similarly to a
standard model). The performance of STD(X) is constant across settings because it does
not rely on C. This experiment also shows that not all dimensions of C need to be relevant
to the prediction for CCM to work. This is a desirable property as expert knowledge with
respect to relevant concepts could be flawed.

In the case where S contains information outside of C and U (i.e., Y ̸⊥⊥ S|C, U), our
findings are similar (Appendix). All methods except CBM perform well on the biased
dataset.
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FIGURE 5.3: Model performance under the clean test set when violating A2.
C becomes less informative when replaced with noise, presenting an advan-
tage to using S and violating assumption A2. Despite this, CCM still per-
forms well, even when large portions of C are irrelevant for the prediction.

5.4.2 Experiments on the MIMIC dataset

The MIMIC-CXR dataset [162], [163] consists of chest X-rays and corresponding radiol-
ogy reports. These chest X-rays can be linked to MIMIC-IV [163], [164], which contains
clinical data. Each chest X-ray is associated with 14 text-mined radiology report labels
corresponding to 14 different radiological findings. Out of the 14 provided tasks, we
chose cardiomegaly (enlarged heart) as the source task to learn C and edema (excess fluid
in lungs) as the target task. The two tasks are related. Cardiomegaly is a structural abnor-
mality of the heart and a sign of cardiac dysfunction. Patients with cardiac dysfunction
are more likely to develop heart failure, and pulmonary edema can develop as a conse-
quence of heart failure. As such, we expect that predictive features of cardiomegaly are
useful concepts in diagnosing edema. The 14 provided labels are categorized as positive,
negative, uncertain, and not mentioned. Following [165] and [155], we mapped uncer-
tain labels to positive and discard images without labels. After discarding images, the
cardiomegaly/edema tasks contained 108, 785/107, 510 X-rays.

Instead of introducing synthetic shortcuts such as noise, we opted for a more realis-
tic shortcut based on patient sex, which we extracted from the clinical data contained in
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MIMIC-IV. In particular, we increased the correlation between male sex and edema by
dropping T proportion of females/males with/without a positive label. In contrast, male
sex was only mildly correlated with cardiomegaly without resampling (correlation coef-
ficient of −0.025; Empirical 95% bootstrapped confidence interval of (−0.031,−0.019)).
To obtain C, we trained an Inception V3 network pretrained on the ImageNet dataset to
predict cardiomegaly. Then we used the last layer representation of the network as C
(dimension 2048).

Model Training. Similar to the CUB experiment, we used the Inception V3 network
initialized using the ImageNet dataset as the prediction model. We divided the chest X-
ray datasets into train, validation, and test sets with a 64/16/20 random split. Then, we
resampled the edema dataset such that male and edema are correlated. All methods were
trained on this biased edema dataset. The hyperparameter search range was the same as
the CUB experiments.

Evaluation. Since both S and Y are binary, we can resample the test set to vary the cor-
relation between S and Y to stress test our model under different testing distributions. In
particular, we swept the correlation between sex and edema from−1 (reversing the train-
ing correlation) to 1 (extremely biased distribution). A model robust to the sex shortcut
should do well in all settings.

Results. First, the performance of all methods is significantly affected when the test
correlation is decreased to the point of reversal with the correlation in the training set
(Figure 5.4). This is inevitable as the shortcut provides information to predicting Y given
C, violating A2. However, across the range of test correlation settings, when trained on
the biased distribution (correlation between male and edema is 0.65), CCM EYE performs
consistently better than baselines. Compared to CBM, CCM EYE is most effective when
the testing correlation is similar to the training correlation. Compared to other baselines,
CCM EYE is most effective when the shortcut is negatively correlated with the outcome,
completely reversing the relationship observed during training. This demonstrates the
robustness of CCM EYE against the sex shortcut. Similar trends hold when we vary the
training correlation between male and edema (Appendix).
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FIGURE 5.4: Result of the MIMIC-CXR experiment. The model is trained on
a biased dataset where S and Y has a correlation of 0.65 and tested on sub-
sampled dataset with different correlation. The result shows that CCM EYE
is consistently better than baselines. The error bars are the 95% confidence

intervals bootstrapped on the test set.

5.5 Summary & Conclusions

In this chapter, we proposed two approaches that use domain knowledge C to learn an
accurate model while mitigating the use of shortcuts. Our methods do not assume C to be
sufficient to make an accurate prediction and apply even to scenarios where |corr(S, C)| =
1, settings previous work have not addressed. Between our proposed methods, CCM EYE
outperforms CCM RES when U is correlated with S. Applied to two datasets, we show
that CCMs successfully reduce shortcut learning without sacrificing accuracy, even when
our assumptions that C is invariant to S and S is redundant given C do not hold.

We note that a model may not use S even if S is correlated with Y. This happens either
because C and U are more predictive than S, or when C and U are easier to extract (e.g.,
requires less training iterations to accurately learn) from the input than S [166]. However,
we cannot count on those facts to learn a robust model because verifying the predictability
or the extractability of S versus C and U requires knowing all three variables in advance,
which may not be the case.
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This chapter also advances credible learning introduced in Chapter 4 by allowing do-
main knowledge to be expressed on the concept/representation space and making credi-
ble models non-linear. In this setting, other regularizers may also increase credibility (e.g.,
∥θx∥2

2). Future work could consider the task of finding the optimal credible regularizer
to mitigate using shortcuts. Furthermore, while we explored two ways to obtain C (i.e.,
using auxiliary labels and using a transfer learning setup), we have not compared differ-
ent sources of C in terms of their robustness to shortcuts and the effort to obtain them,
both important for the adoption of our technique. Future work should explore those di-
rections. Going forward, we expect CCM to be a stepping stone towards building robust
systems that can be safely applied in practice.
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Chapter 6

Conclusion

This dissertation addressed the challenge of underspecification. In this setting, good test-
ing performance does not always translate to good deployment performance because of
the gap between the modeling world and the real world [8]. This gap can be the result of
biased data collection and/or limited sample size, leading to multiple models with sim-
ilar test performance but drastically different generalization error in the real world. Re-
solving underspecification is of particular interest to high stake domains such as health-
care where the cost of making a mistake is high and the data are often limited. Fortunately,
beyond training data, experts often have knowledge about feature importance such as
risk factors for a disease. Our primary thesis centers around the idea of using domain
knowledge to select models that are generalizable beyond the training distribution.

In this dissertation, we presented approaches that address issues around model under-
specification by building on work spanning several fields, including model interpretation,
regularization and shortcut learning. We summarize challenges and our contributions in
each field.

When selecting among models, model interpretation allows domain experts to exam-
ine the reasoning of a model (e.g., importance of features) after it is trained to safeguard
its deployment. However, as we described in Chapter 3, many existing approaches for
estimating feature importance are problematic because they ignore or hide dependencies
among features [14], [17], [23]. A causal graph, which encodes the relationships among in-
put variables, can aid in this process. Unfortunately, current approaches that assign credit
to nodes in the causal graph fail to explain the entire graph, limiting our understanding
on how a feature affects the outcome [23], [120]. In order to understand both the direct
and indirect impact of features on the output of a model, we proposed Shapley Flow,
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a model agnostic explanation method that generalizes three previous game theoretic ap-
proaches and uniquely satisfies an extension of Shapley value axioms to graph (Chapter
3). By viewing feature attribution from a graph perspective, Shapley Flow allows machine
learning practitioners to reason about feature interventions in relation to other features.
Furthermore, by highlighting causal graphs, Shapley Flow reminds researchers about the
importance/danger of reasoning based on causality/correlation in model interpretation.

Even when the explanation procedure is sound, a model’s reasoning can still be con-
fusing (e.g., not conforming to well-established knowledge). This could happen because
of underspecification: models pick up features that are correlated with expert identified
features as opposed to using the expert features. The usual tool to resolve underspeci-
fication is regularization, through which we restrict the hypothesis space. However, as
we described in Chapter 4, most regularization approaches do not distinguish between
expert identified features and others, again allowing learning models with confusing rea-
soning [78], [80], [87]. For regularization approaches that do take into account domain
knowledge [81], [88], they either densely use non-expert identified features or sparsely
use expert identified features. In both cases, the resulting models do not conform to well-
established knowledge. To address those issues in the linear setting, we proposed the Ex-
pert Yielded Estimate penalty (i.e., EYE regularization), a regularization term with prov-
able desirable properties that significantly increased alignment with domain knowledge
without sacrificing accuracy when applied on two large scale clinical datasets (Chapter 4).
This work debunks the notion that credibility comes at the cost of accuracy and provides
a tool for researchers to correct confusing model reasoning with domain knowledge.

Finally, it is not clear when and how learning a credible model (i.e., an accurate model
with sensible reasoning) can help mitigate shortcut learning (i.e., using features that are
spuriously correlated with the target). As we described in Chapter 5, most approaches for
mitigating shortcut learning assume that shortcuts are known a priori [105]–[108], [110],
[111], [113], [114]. However, in practice, we might not have direct access to them, rather
we have domain knowledge about what input features or functions on those features that
are likely to not contain shortcuts. We refer to features that do not contain shortcuts as
causally relevant features. The catch is that using those expert features alone prevents the
model from learning yet unknown but causally relevant features from the data [19], [155],
[167]. To address those issues, we identified sufficient assumptions for a credible model
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to eliminate using shortcuts while incorporating unknown but causally relevant features.
Furthermore, previous credible learning approaches required domain knowledge to be
expressed in the input space, which is inconvenient or even infeasible for complex input
modalities such as images. To address this limitation, we proposed learning Concept
Credible Models in which we incorporate domain knowledge in the concept space in-
stead of the input space (Chapter 5). This work provides a valuable tool to safeguard
model deployment without requiring deployment data or direct knowledge of shortcuts.

There are several areas touched upon in this dissertation that could be interesting for
further examination. Here we outline a few possibilities. First, we examine potential ex-
tensions to Shapley Flow. Shapley Flow assumes access to a complete causal graph of
the input, which can be expensive if not infeasible to obtain. Future work could exam-
ine the implication of working with a partially defined causal graph or a causal graph
learned directly from data. Relating the completeness and the quality of the causal graph
to the utility of Shapley Flow is important for its real world application. For example, we
need to know how sensitive Shapley Flow is to a wrongly specified input causal graph
in order to safely apply this technique. Another interesting line of future work involves
examining the trade-off made in our design decisions for formalizing graph based ex-
planations. This involves detailed analysis on the definition of edge removal, the payoff
function, and the choice of summary statistics used to report the effect of removing edges
in different contexts (e.g., coalition), paralleling a recent effort [168] to characterize feature
based explanation method. As an example, since the publication of Shapley Flow, Singal
et al. [169] derived a different unique axiomatic edge attribution method by changing
the payoff function. Instead of characterizing the attribution of an edge using the change
in output, they focus on the change in attribution to the source node of the edge. This
allows them to bypass our need to define the complex notion of boundary consistent his-
tory while still satisfying an extension to Shapley value axioms. Despite the equivalence
of both approaches when the model and the causal graph are linear, in nonlinear cases,
little is known about their differences and the resulting implications. Similarly, while
Shapley value is one way to summarize the effect of edge removal under different con-
texts1, it is not clear how it compares to other axiomatic summaries such as Banzhaf value
[171] and minimal cause motivated summaries [172].

1with some limitations exposed in [170]
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Second, we examine potential extensions to credible learning. While we focused on
credibility, our proposed regularization technique could be extended to other settings in
which the user would like to guide variable selection. For example, instead of encoding
knowledge pertaining to which variables are known risk factors, r could encode informa-
tion about which variables are actionable, resulting in a more actionable model. Similarly,
one can use 1− r to encode the cost of obtaining features (assuming that some features
go through longer pipelines to obtain than others). This in turn can cut down inference
time without sacrificing accuracy. Another limitation of credible learning is that we as-
sumed r to be binary. In reality, there are other forms of constraints an user might want
a model to satisfy. For example, researchers could enforce monotonicity in variables, in-
corporate known logic rules, or relax r from binary to fractional so as to encode experts’
confidence. Those changes require developing new notions of credibility and techniques
to achieve them. Interested readers can refer to [173] for further inspirations to encode
domain knowledge.

Third, we examine potential extensions to concept credible models (CCM). One area
that needs more attention is comparing the robustness of known concepts (C) coming
from different sources. In our work, we explored two settings to obtain C, one using
auxiliary labels and another using a transfer learning setup. However, there are many
more potential sources of C such as legacy code [174] and rule of thumbs that practitioners
follow. These sources of C can be less accurate in training but potentially more robust
to shortcuts than learning from the data alone. identifying which sources of C fit well
with our assumptions would be valuable. Another area that merits attention is marrying
concept based interpretation with CCM. While CCM is capable of ruling out shortcuts
that are redundant given C, it does not replace the need to carefully interpret and examine
concepts picked up by the model, as some shortcuts contain more information. Future
work could consider complementing CCM with unknown concept interpretation to rule
out other kinds of shortcuts.

Finally, all techniques presented in this dissertation require soliciting inputs from ex-
perts. In particular, Shapley Flow requires experts to specify an input causal graph and
credible learning requires experts to go through and mark concepts (or features) as im-
portant or not. If the graph is dense or the number of concepts is large, applying our tech-
niques can be time consuming. Therefore future work should examine potential ways to
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decrease the cognitive burdens for experts to provide their knowledge. For example, for
Shapley Flow, one can consider first learning a causal graph from the data and then only
ask experts to verify causal links that are uncertain. In presenting the edge attribution,
one can either only show the most important edges, or cluster features and aggregate
edges between clusters so that there are less interactions for experts to look at. If experts
need more details, we can expand the cluster of interest to show them the interaction
within the cluster. For credible learning, one can consider first mining relevant features
from the literature to create a short list of candidates for experts to consider. For example,
one can first apply information retrieval techniques on medical journals to extract out
potential risk factors for a disease and then let experts examine and modify the identi-
fied risk factors. Furthermore, future work should compare the cognitive cost of different
ways to solicit expert knowledge. For example, asking experts to specify a related task
may be much easier than asking them to directly specify relevant features.

The main contributions of this dissertation are: 1) enabling a system level view of
Shapley value based feature attribution, 2) formalizing the idea of credible learning with
an approach that leads to accurate linear models with sensible explanations, and 3) con-
necting credible and shortcut learning while incorporating non-input level domain knowl-
edge. Going forward, we expect techniques developed in this dissertation to help build
robust machine learning models that generalize beyond the training environment.
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Appendix A

Shapley Flow Appendix

A.1 Explanation boundary for on-manifold methods with-

out a causal graph

On-manifold perturbation using conditional expectations can be unified with Shapley
Flow using explanation boundaries (Figure A.1a). Here we introduce X̃i as an auxiliary
variable that represent the imputed version of Xi. Perturbing any feature Xi affects all
input to the model (X̃1, X̃2, X̃3, X̃4) so that they respect the correlation in the data after the
perturbation. When Xi has not been perturbed, X̃j treats it as missing for i, j ∈ [1, 2, 3, 4]
and would sample X̃j from the conditional distribution of Xj given non-missing prede-
cessors. The red edges contain causal links from Figure 3.1, whereas the black edges are
the causal structure used by the on-manifold perturbation method. The credit is equally
split among the features because they are all correlated. Again, although giving X1 and

(A) On-manifold attribution (B) On-manifold boundary

FIGURE A.1: On manifold perturbation methods can be computed using
Shapley Flow with a specific explanation boundary.
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X2 credit is not true to f , it is true to the model defined by F.

A.2 The Shapley Flow algorithm

A pseudo code implementation highlighting the main ideas for Shapley Flow is included
in Algorithm 1. For approximations, instead of trying all edge orderings in line 15 of
Algorithm 1, one can try random orderings and average over the number of orderings
tried.

A.3 Shapley Flow’s uniqueness proof

Without loss of generality, we can assume G has a single source node s. We can do this
because every node in a causal graph is associated with an independent noise node [30,
Chapter 6]. For deterministic relationships, the function for a node doesn’t depend on
its noise. Treating those noise nodes as a single node, s, wouldn’t have changed any
boundaries that already exist in the original graph. Therefore we can assume there is a
single source node s.

A.3.1 At most one solution satisfies the axioms

Assuming that a solution exists, we show that it must be unique.

Proof. We adapt the argument from the Shapley value uniqueness proof 1, by defining
basis payoff functions as carrier games. Choose any boundary B, we show here that any
game defined on the boundary has a unique attribution. We also drop the subscript B in
the proof as there is no ambiguity. Note that since every edge will appear in some bound-
ary, if all boundary edges are uniquely attributed to, all edges have unique attributions.
A carrier game associated with coalition (ordered list) O is a game with payoff function
vO such that vO(S) = 1(0) if coalition S starts with O (otherwise 0). By dummy player,
we know that only the last edge e in O gets credit and all other edges in the cut set are

1https://ocw.mit.edu/courses/economics/14-126-game-theory-spring-2016/lecture-notes/
MIT14_126S16_cooperative.pdf
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Algorithm 1 Shapley Flow pseudo code
Input: A computational graph G (each node i has a function fi), foreground sample x,
background sample x′

Output: Edge attribution ϕ : E→ R

Initialization:
G: add an new source node pointing to original source nodes.

1: function SHAPLEYFLOW(G, x′, x)
2: INITIALIZE(G, x′, x) ▷ Set up game ν for any boundary in G
3: s← SOURCE(G) ▷ Obtain the source node
4: return DFS(s, {}, [])
5: end function

6: function DFS(s, D, S)
7: ▷ s is a node, D is the data side of the current boundary, S is coalition
8: ▷ Using Python list slice notation
9: Initialize ϕ to output 0 for all edges

10: if ISSINKNODE(s) then
11: ▷ Here we overload D to refer to its boundary
12: ϕ(S[−1])← νD(S)− νD(S[: −1]) ▷ Difference in output is attributed to the

edge
13: return ϕ
14: end if

15: for p← AllOrderings(Children(s)) do ▷ Try all orderings/permutations of the
node’s children

16: for c← p do ▷ Follow the permutation to get the node one by one
17: edgeCredit← DFS(c, D ∪ {s}, S + [(s, c)]) ▷ Recurse downward

18: ϕ← ϕ +
edgeCredit

NumChildren(s)! ▷ Average attribution over number of runs

19: ϕ(S[−1])← ϕ(S[−1]) + edgeCredit(s,c)
NumChildren(s)! ▷ Propagate upward

20: end for
21: end for
22: return ϕ
23: end function
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dummy because a coalition is constructed in order (only adding e changes the payoff from
0 to 1). Note that in contrast with the traditional symmetry axiom [18] defined on a set
of players, the symmetry axiom is not explicit in our case (it is made implicitly) because
not all edges in the carrier game are symmetric with each other (observe that e is different
from all other edges, which are dummy), thus we do not need an explicit symmetry ax-
iom to argue for unique attribution in the carrier game. Furthermore, e must be an edge
in the boundary to form a valid game because boundary edges are the only edges that
are connected to the model defined by the boundary. Therefore we give 0 credit to edges
in the cut set other than e (because they are dummy players). By the efficiency axiom, we
give ∑h∈H̃

νB(h)
|H̃| − νB([]) credit to e where H̃ is the set of all possible boundary consistent

histories as defined in Section 3.3.3. This uniquely attributed the boundary edges for this
game.

We show that the set of carrier games associated with every coalition that ends in a
boundary edge (denoted as Ĉ) form basis functions for all payoff functions associated
with the system. Recall from Section 3.3.2 that C̃ is the set of boundary consistent coali-
tions. We show here that payoff value on coalitions from C̃ is redundant given Ĉ. Note
that C̃ \Ĉ represents all the coalitions that do not end in a boundary edge. For c ∈ C̃
\Ĉ, vO(c) = vO(c[: −1]) (using Python’s slice notation on list) because only boundary
edges are connected to the model defined by the boundary. Therefore it suffices to show
that vO is linearly independent for O ∈ Ĉ. For a contradiction, assume for all c ∈ Ĉ,

∑O⊆Ĉ αOvO(c) = 0, with some non zero αO ∈ R (definition of linear dependence). Let
S be a coalition with minimal length such that αS ̸= 0. We have ∑O⊆Ĉ αOvO(S) = αS, a
contradiction.

Therefore for any ν we have unique α’s such that ν = ∑O⊆Ĉ αOvO. Using the linearity
axiom, we have

ϕν = ϕ∑O⊆Ĉ αOvO = ∑
O⊆Ĉ

αOϕvO

The uniqueness of α and ϕvO makes the attribution unique if a solution exists. Axioms
used in the proof are italicized.
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A.3.2 Shapley Flow satisfies the axioms

Proof. We first demonstrate how to generate all boundaries. Then we show that Shapley
Flow gives boundary consistent attributions. Following that, we look at the set of histories
that can be generated by DFS in boundary B, denoted as Πdfs

B . We show that Πdfs
B = H̃B.

Using this fact, we check the axioms one by one.

• Every boundary can be “grown” one node at a time from D = {s} where s is the
source node: Since the computational graph G is a directed acyclic graph (DAG),
we can obtain a topological ordering of the nodes in G. Starting by including the
first node in the ordering (the source node s), which defines a boundary as (D =

{s}, F = Nodes(G)\D), we grow the boundary by adding nodes to D (removing
nodes from F) one by one following the topological ordering. This ordering ensures
the corresponding explanation boundary is valid because the cut set only flows from
D to F (if that’s not true, then one of the dependency nodes is not in D, which
violates topological ordering).

Now we show every boundary can be “grown” in this fashion. In other words,
starting from an arbitrary boundary B1 = (D1, F1), we can “shrink” one node at
a time to D = {s} by reversing the growing procedure. First note that, D1 must
have a node with outgoing edges only pointing to nodes in F1 (if that’s not the case,
we have a cycle in this graph because we can always choose to go through edges
internal to D1 and loop indefinitely). Therefore we can just remove that node to
arrive at a new boundary (now its incoming edges are in the cut set). By the same
argument, we can keep removing nodes until D = {s}, completing the proof.

• Shapley Flow gives boundary consistent attributions: We show that every boundary
grown has edge attribution consistent with the previous boundary. Therefore all
boundaries have consistent edge attribution because the boundary formed by any
two boundary’s common set of nodes can be grown into those two boundaries using
the property above. Let’s focus on the newly added node c from one boundary to
the next. Note that a property of depth first search is that every time c’s value is
updated, its outgoing edges are activated in an atomic way (no other activation of
edges occur between the activation of c’s outgoing edges). Therefore, the change
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in output due to the activation of new edges occur together in the view of edges
upstream of c, thus not changing their attributions. Also, since c’s outgoing edges
must point to the model defined by the current boundary (otherwise it cannot be
a valid topological ordering), they don’t have down stream edges, concluding the
proof.

• Πdfs
B = H̃B: Since attribution is boundary consistent, we can treat the model as

a blackbox and only look at the DFS ordering on the data side. Observe that the
edge traversal ordering in DFS is a valid history because a) every edge traversal
can be understood as a message received through edge , b) when every message
is received, the node’s value is updated, and c) the new node’s value is sent out
through every outgoing edge by the recursive call in DFS. Therefore the two side of
the equation are at least holding the same type of object.

We first show that Πdfs
B ⊆ H̃B. Take h ∈ Πdfs

B , we need to find a history h∗ in B∗ such
that a) h can be expanded into h∗ and b) for any boundary, there is a history in that
boundary that can be expanded into h∗. Let h∗ be any history expanded using DFS
that is aligned with h. To show that every boundary can expand into h∗, we just need
to show that the boundaries generated through the growing process introduced in
the first bullet point can be expanded into h∗. The base case is D = {s}. There
must have an ordering to expand into h∗ because h∗ is generated by DFS, and that
DFS ensures that every edge’s impact on the boundary is propagated to the end of
computation before another edge in D is traversed. Similarly, for the inductive step,
when a new node c is added, we just follow the expansion of its previous boundary
to reach h∗.

Next we show that H̃B ⊆ Πdfs
B . First observe that for history h1 in B1 = (D1, F1)

and history h2 in B2 = (D2, F2) with F2 ⊆ F1, if h1 cannot be expanded into h2,
then HE(h1) ∩ HE(h2) = ∅ because they already have mismatches for histories
that doesn’t involve passing through B1. Assume we do have h ∈ H̃B but h ̸∈
Πdfs
B . To derive a contradiction, we shrink the boundary one node at a time from B,

again using the procedure described in the first bullet point. We denote the resulting
boundary formed by removing n nodes as B−n. Since h is assumed to be boundary
consistent, there exist hB−1 ∈ HB−1 such that hB−1 must be able to expand into h.
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Say the two boundaries differ in node c. Note that any update to c crosses B−1,
therefore its impact must be reached by F before another event occurs in D−1. Since
all of c’s outgoing edges crosses B, any ordering of messages sent through those
edges is a DFS ordering from c. This means that if hB−1 can be reached by DFS, so
can hB, violating the assumption. Therefore, hB−1 ̸∈ Πdfs

B−1
and hB−1 ∈ H̃B−1 (the

latter because hB−1 can expand into a history that is consistent with all boundaries
by first expanding into h). We run the same argument until D = {s}. This gives a
contradiction because in this boundary, all histories can be produced by DFS.

• Efficiency: Since we are attributing credit by the change in the target node’s value
following a history h given by DFS, the target for this particular DFS run is thus
νB(h) − νB([]). Average over all DFS runs and noting that H̃B = Πdfs

B gives the
target ∑h∈H̃B νB(h)/|H̃B| − νB([]). Noting that each update in the target node’s
value must flow through one of the boundary edges. Therefore the sum of boundary
edges’ attribution equals to the target.

• Linearity: For two games of the same boundary v and u, following any history, the
sum of output differences between the two games is the output difference of the
sum of the two games, therefore ϕv+u would not differ from ϕv + ϕu. It’s easy to see
that extending addition to any linear combination wouldn’t matter.

• Dummy player: Since Shapley Flow is boundary consistent, we can just run DFS
up to the boundary (treat F as a blackbox). Since every step in DFS remains in the
coalition C̃B because Πdfs

B ⊆ H̃B, if an edge is dummy, every time it is traversed
through by DFS, the output won’t change by definition, thus giving it 0 credit.

Therefore Shapley Flow uniquely satisfies the axioms. We note that efficiency require-
ment simplifies to f (x)− f (x′) when applying it to an actual model because all histories
from DFS would lead the target node to its target value. We can prove a stronger claim
that actually all nodes would reach its target value when DFS finishes. To see that, we do
an induction on a topological ordering of the nodes. The source nodes reaches its final
value by definition. Assume this holds for the kth node. For the k + 1th node, its parents
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achieves target value by induction. Therefore DFS would make the parents’ final values
visible to this node, thus updating it to the target value.

A.4 Causal graphs

While the nutrition dataset is introduced in the main text, we describe an additional
dataset to further demonstrate the usefulness of Shapley Flow. Moreover, we describe
in detail how the causal relationship is estimated. Note that the resulting causal graphs
are over-simplifications of the true causal graphs; the relationship between source nodes
(e.g., race and sex) and other features is far more complex. These causal graphs are used as
proof of concepts to show both the direct and indirect effects of features on the prediction
output. The causal graphs for the nutrition dataset and the income dataset are visualized
in Figure A.2.

A.4.1 The Census Income dataset

The Census Income dataset consists of 32, 561 samples with 12 features. The task is to
predict whether one’s annual income exceeds 50k. We assume a causal graph, similar to
that used by [23] (Figure A.2b). Attributes determined at birth e.g., sex, native country,
and race act as source nodes. The remaining features (marital status, education, relation-
ship, occupation, capital gain, work hours per week, capital loss, work class) have fully
connected edges pointing from their causal ancestors. All features have a directed edge
pointing to the model.

A.4.2 Causal Effect Estimation

Given the causal structure described above, we estimate the relationship among variables
using XGBoost. More specifically, using an 80/20 train test split, we use XGBoost to learn
the function for each node. If the node value is categorical, we train to minimize cross
entropy loss. Otherwise, we minimize mean squared error. Models are fitted by 100 XG-
Boost trees with a max depth of 3 for up to 1000 epochs. Since features are rarely perfectly
determined by their dependency node, we add independent noise nodes to account for
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this effect. That is, each non-sink node is pointed to by a unique noise node that account
for the residue effect of the prediction.

Depending on whether the variable is discrete or continuous, we handle the noise
differently. For continuous variables, the noise node’s value is the residue between the
prediction and the actual value. For discrete variables, we assume the actual value is
sampled from the categorical distribution specified by the prediction. Therefore the noise
node’s value is any possible random number that could result in the actual value. As a
concrete example for handling discrete variable, consider a binary variable y, and assume
the trained categorical function f gives f (x) = [0.3, 0.7] where x is the foreground value
of the input to predict y. We view the data generation as the following. The noise term
associated with y is treated as a uniform random variable between 0 and 1. If it lands
within 0 to 0.3, y is sampled to be 0, otherwise 1 (matching the categorical function of
70% chance of sampling y to be 1). Now if we observe the foreground value of y to be 0,
it means the foreground value of noise must be uniform between 0 to 0.3. Although we
cannot infer the exact value of the noise, we can sample the noise from 0 to 0.3 multiple
times and average the resulting attribution.

A.5 Additional Results

In this section, we first present additional sanity checks with synthetic data. Then we
show additional examples from both the nutrition and income datasets to demonstrate
how a complete view of boundaries should be preferable over single boundary approaches.

A.5.1 Additional Sanity Checks

We include further sanity check experiments in this section. The first sanity check consists
of a chain with 4 variables. Each node along the chain is an identical copy of its predeces-
sor and the function to explain only depends on X4 (Figure A.3). The dataset is created
by sampling X1 ∼ N (0, 1), that is a standard normal distribution, with 1000 samples. We
use the first sample as background, and explain the second sample (one can choose arbi-
trary samples to obtain the same insights). As shown in Figure A.3, independent SHAP
fails to show the indirect impact of X1, X2, and X3, ASV fails to show the direct impact
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(A) Causal graph for the nutrition dataset

(B) Causal graph for the Census Income dataset

FIGURE A.2: The causal graphs we used for the two real datasets. Note that
each node in the causal graph for (a) is given a noise node to account for ran-
dom effects. The noise nodes are omitted for better readability for (b). The
resulting causal structures are over-simplifications of the true causal struc-
tures; the relationship between source nodes (e.g., race and sex) and other
features is far more complex. These causal graphs are used as proof of con-
cepts to show both the direct and indirect effects of features on the prediction

output.
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(A) chain dataset

Independent On-manifold ASV

X4 -1.82 -0.45 0.0
X1 0.0 -0.45 -1.82
X3 0.0 -0.45 0.0
X2 0.0 -0.45 0.0

(B) Shapley Flow

FIGURE A.3: (a) The chain dataset contains exact copies of nodes. The dashed
edges denotes dummy dependencies. (b) While Shapley Flow shows the en-
tire path of influence, other baselines fails to capture either direct and indirect

effects.

Methods Income Nutrition Synthetic

Independent 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0)
On-manifold 0.4 (± 0.3) 1.3 (± 2.5) 0.8 (± 0.7)
ASV 0.4 (± 0.6) 1.5 (± 3.3) 1.2 (± 1.4)
Shapley Flow 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0)

TABLE A.1: Shapley Flow and independent SHAP have lower mean absolute
error (std) for direct effect of features on linear models.

of X4, on manifold SHAP fails to fully capture both the direct and indirect importance of
any edge.

The second sanity check consists of linear models as described in Section 3.4.3. We
include the full result with the income dataset added in Table A.1 and Table A.2 for
direct and indirect effects respectively. The trend for the income dataset algins with the
nutrition and synthetic dataset: only Shapley Flow makes no mistake for estimating both
direct and indirect impact. Independent Shap only does well for direct effect. ASV only
does well for indirect effects (it only reaches zero error when evaluated on source nodes).
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Methods Income Nutrition Synthetic

Independent 0.1 (± 0.2) 0.8 (± 2.7) 1.1 (± 1.4)
On-manifold 0.4 (± 0.3) 0.9 (± 1.6) 1.5 (± 1.5)
ASV 0.1 (± 0.1) 0.6 (± 1.9) 1.1 (± 1.5)
Flow 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0)

TABLE A.2: Shapley Flow and ASV have lower mean absolute error (std) for
indirect effect on linear models.

A.5.2 Additional examples

In this section, we analyze another example from the nutrition dataset (Figure A.4) and 3
additional example from the adult censor dataset.

Independent SHAP ignores the indirect impact of features. Take an example from
the nutrition dataset (Figure A.4). The race feature is given low attribution with inde-
pendent SHAP, but high importance in ASV. This happens because race, in addition to
its direct impact, indirectly affects the output through blood pressure, serum magnesium,
and blood protein, as shown by Shapley Flow (Figure A.4a). In particular, race partially
accounts for the impact of serum magnesium because changing race from Black to White
on average increases serum magnesium by 0.07 meg/L in the dataset (thus partially ex-
plaining the increase in serum magnesium changing from the background sample to the
foreground). Independent SHAP fails to account for the indirect impact of race, leaving
the user with a potentially misleading impression that race is irrelevant for the prediction.

On-manifold SHAP provides a misleading interpretation. With the same example
(Figure A.4), we observe that on-manifold SHAP strongly disagrees with independent
SHAP, ASV, and Shapley Flow on the importance of age. Not only does it assign more
credit to age, it also flips the sign, suggesting that age is protective. However, Figure A.5a
shows that age and earlier mortality are positively correlated; then how could age be pro-
tective? Figure A.5b provides an explanation. Since SHAP considers all partial histories
regardless of the causal structure, when we focus on serum magnesium and age, there
are two cases: serum magnesium updates before or after age. We focus on the first case
because it is where on-manifold SHAP differs from other baselines (all baselines already
consider the second case as it satisfies the causal ordering). When serum magnesium up-
dates before age, the expected age given serum magnesium is higher than the foreground
age (yellow line above the black marker). Therefore when age updates to its foreground
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value, we observe a decrease in age, leading to a decrease in the output (so age appears to
be protective). Serum magnesium is just one variable from which age steals credit. Sim-
ilar logic applies to TIBC, red blood cells, serum iron, serum protein, serum cholesterol,
and diastolic BP. From both an in/direct impact perspective, on-manifold perturbation
can be misleading since it is based not on causal but on observational relationships.

ASV ignores the direct impact of features. As shown in Figure A.4, serum mag-
nesium appears to be more important in independent SHAP compared to ASV. From
Shapley Flow (Figure A.4a), this difference is explained by race as its edge to serum mag-
nesium has a negative impact. However, looking at ASV alone, one fails to understand
that intervening on serum magnesium could have a larger impact on the output.

Shapley Flow shows both direct and indirect impacts of features. Focusing on the
attribution given by Shapley Flow (Figure A.4a). We not only observe similar direct im-
pacts in variables compared to independent SHAP, but also can trace those impacts to
their source nodes, similar to ASV. Furthermore, Shapley Flow provides more detail com-
pared to other approaches. For example, using Shapley Flow we gain a better under-
standing of the ways in which race impacts survival. The same goes for all other features.
This is useful because causal links can change (or break) over time. Our method provides
a way to reason through the impact of such a change.

Figure A.6 gives an example of applying Shapley Flow and baselines on the income
dataset. Note that the attribution to capital gain drops from independent SHAP to on-
manifold SHAP and ASV. From Shapley Flow, we know the decreased attribution is due
to age and race. More examples are shown in Figure A.7 and A.8.

A.5.3 A global understanding with Shapley Flow

In addition to explaining a particular example, one can explain an entire dataset with
Shapley Flow. Specifically, for multi-class classification problems, we take the average of
attributions for the probability predicted for the actual class, in accordance with [23]. A
demonstration on the income dataset using 1000 randomly selected examples is included
in Figure A.9. As before, we use a single shared background sample for explanation.
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Top features Age Serum Magnesium Race

Background sample 35.0 1.37 Black
Foreground sample 42.0 1.63 white

Attributions Independent On-manifold ASV

Age 0.23 -0.38 0.3
Serum Magnesium -0.21 -0.02 -0.15
Race -0.06 0.04 -0.24
Pulse pressure 0.0 -0.08 0.0
Diastolic BP 0.0 0.08 0.0
Serum Cholesterol 0.0 0.07 0.0
Serum Protein 0.01 0.06 0.0
Serum Iron 0.0 0.05 0.0
Poverty index -0.02 0.01 -0.01
Systolic BP -0.03 -0.01 0.0
Red blood cells 0.0 0.05 0.0
Blood protein 0.0 0.0 0.04
TIBC 0.0 0.04 0.0
Blood pressure 0.0 0.0 -0.03
TS 0.0 0.03 0.0
BMI -0.0 -0.03 -0.0
Sex 0.0 0.02 0.0
Serum Albumin 0.0 -0.01 0.0
White blood cells 0.01 -0.01 0.0
Sedimentation rate 0.0 0.01 0.0
Inflamation 0.0 0.0 0.01
Iron 0.0 0.0 0.0

(A) Shapley Flow

FIGURE A.4: Comparison among baselines on a sample (top table) from the
nutrition dataset, showing top 10 features/edges. As noted in the main text
this graph is an oversimplification and is not necessarily representative of the

true underlying causal relationship.
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(A) Age vs. output (B) Age vs. magnesium

FIGURE A.5: Age appears to be protective in on-manifold SHAP because it
steals credit from other variables.

Here, we observe that although the relative importance across independent SHAP, on-
manifold SHAP, and ASV are similar, age and sex have opposite direct versus indirect
impact as shown by Shapley Flow.

A.5.4 Example with multiple background samples

An example with 100 background samples is shown in Figure A.10. Shapley Flow shows
a holistic picture of feature importance, while other baselines only show part of the pic-
ture.

Independent SHAP ignores the indirect impact of features. Take an example from
the nutrition dataset (Figure A.10). Independent SHAP only considers the direct impact
of systolic blood pressure, and ignores its potential impact on pulse pressure (as shown by
Shapley Flow in Figure A.10a). If the causal graph is correct, independent SHAP would
underestimate the effect of intervening on Systolic BP.

On-manifold SHAP provides a misleading interpretation. With the same example
(Figure A.10), we observe that on-manifold SHAP strongly disagrees with independent
SHAP, ASV, and Shapley Flow on the importance of age. In particular, it flips the sign on
the importance of age. Since the background age (50) is very close to the foreground age
(51), we would not expected age to significantly affect the prediction. Figure A.11b pro-
vides an explanation. Since SHAP considers all partial histories regardless of the causal
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Background sample Foreground sample

Age 39 35
Workclass State-gov Federal-gov
Education-Num 13 5
Marital Status Never-married Married-civ-spouse
Occupation Adm-clerical Farming-fishing
Relationship Not-in-family Husband
Race White Black
Sex Male Male
Capital Gain 2174 0
Capital Loss 0 0
Hours per week 40 40
Country United-States United-States

Independent On-manifold ASV

Education-Num -0.12 -0.11 -0.09
Relationship 0.05 0.06 0.04
Capital Gain 0.09 0.01 0.03
Occupation -0.03 -0.07 -0.02
Marital Status 0.04 0.05 0.03
Workclass 0.02 0.03 0.02
Race -0.01 -0.03 0.01
Age -0.01 -0.01 0.02
Capital Loss 0.0 0.03 0.0
Country 0.0 0.03 0.0
Sex 0.0 0.03 0.0
Hours per week 0.0 0.0 0.0

(A) Shapley Flow

FIGURE A.6: Comparison between independent SHAP, on-manifold SHAP,
ASV, and Shapley Flow on a sample from the income dataset. Shapley flow
shows the top 10 links. The direct impact of capital gain is not represented
by on-manifold SHAP. As noted in the text this graph is based on previous
work and is not necessarily representative of the true underlying causal rela-

tionship.
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Background sample foreground sample

Age 39 30
Workclass State-gov State-gov
Education-Num 13 13
Marital Status Never-married Married-civ-spouse
Occupation Adm-clerical Prof-specialty
Relationship Not-in-family Husband
Race White Asian-Pac-Islander
Sex Male Male
Capital Gain 2174 0
Capital Loss 0 0
Hours per week 40 40
Country United-States India

Independent On-manifold ASV

Relationship 0.17 0.04 0.13
Capital Gain 0.22 0.01 0.07
Occupation 0.1 0.06 0.07
Marital Status 0.08 0.06 0.07
Country -0.04 0.07 0.07
Age -0.0 -0.02 0.13
Education-Num 0.0 0.12 0.0
Race 0.02 0.07 0.0
Workclass 0.0 0.06 0.0
Hours per week 0.0 0.03 0.0
Sex 0.0 0.03 0.0
Capital Loss 0.0 0.01 0.0

(A) Shapley Flow

FIGURE A.7: Comparison between independent SHAP, on-manifold SHAP,
ASV, and Shapley Flow on a sample from the income dataset. Shapley flow
shows the top 10 links. The indirect impact of age is only highlighted by
Shapley Flow and ASV. As noted in the text this graph is based on previous
work and is not necessarily representative of the true underlying causal rela-

tionship.
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Background sample Foreground sample

Age 39 30
Workclass State-gov Federal-gov
Education-Num 13 10
Marital Status Never-married Married-civ-spouse
Occupation Adm-clerical Adm-clerical
Relationship Not-in-family Own-child
Race White White
Sex Male Male
Capital Gain 2174 0
Capital Loss 0 0
Hours per week 40 40
Country United-States United-States

Attributions Independent On-manifold ASV

Marital Status 0.03 0.08 0.03
Capital Gain 0.06 0.02 0.02
Workclass 0.03 0.03 0.02
Relationship -0.01 -0.11 0.01
Education-Num -0.02 0.01 -0.02
Age -0.02 -0.03 0.01
Country 0.0 0.03 0.0
Capital Loss 0.0 0.03 0.0
Occupation 0.0 -0.03 0.0
Sex 0.0 0.03 0.0
Race 0.0 0.02 0.0
Hours per week 0.0 -0.0 0.0

(A) Shapley Flow

FIGURE A.8: Comparison between independent SHAP, on-manifold SHAP,
ASV, and Shapley Flow on a sample from the income dataset. Shapley flow
shows the top 10 links. Note that although age appears to be not important
for all baselines, its impact through different causal edges are opposite as

shown by Shapley Flow.

105



Independent On-manifold ASV

Capital Gain 0.02 0.02 0.03
Education-Num 0.02 0.03 0.02
Age 0.01 0.01 0.01
Occupation 0.0 0.01 0.0
Capital Loss 0.01 -0.0 0.01
Relationship 0.01 0.0 0.0
Hours per week 0.0 0.01 -0.0
Sex 0.0 -0.01 0.0
Country 0.0 -0.01 0.0
Marital Status -0.0 0.0 -0.0
Race 0.0 -0.01 -0.0
Workclass 0.0 -0.0 -0.0

(A) Shapley Flow

FIGURE A.9: Comparison of global understanding between independent
SHAP, on-manifold SHAP, ASV, and Shapley Flow on the income dataset.

Showing only the top 10 attributions for Shapley Flow for visual clarity.
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structure, when we focus on systolic blood pressure and age, there are two cases: systolic
blood pressure updates before or after age. We focus on the first case because it is where
on-manifold SHAP differs from other baselines (all baselines already consider the second
case as it satisfies the causal ordering). When systolic blood pressure updates before age,
the expected age given systolic blood pressure is lower than the foreground age (yellow
line below the black marker). Therefore when age updates to its foreground value, we
observe a large increase in age, leading to a increase in the output (so age appears to
be riskier). from both an in/direct impact perspective, on-manifold perturbation can be
misleading since it is based not on causal but on observational relationships.

ASV ignores the direct impact of features. As shown in Figure A.10, ASV gives no
credit systolic blood pressure because it is an intermediate node. However, it is clear
from Shapley Flow that intervening on systolic blood pressure has a large impact on the
outcome.

Shapley Flow shows both direct and indirect impacts of features. Focusing on the
attribution given by Shapley Flow (Figure A.10a). We not only observe similar direct
impacts in variables compared to independent SHAP, but also can trace those impacts to
their source nodes, similar to ASV.

A.6 Considering all histories could lead to boundary in-

consistency

In this section, we give an example of how considering all history H in the axioms (as
opposed to H̃) could lead to inconsistent attributions across boundaries. Consider two
cuts for the same causal graph shown in Figure A.12. Note that both the green and the
red cut share the edge “a”. We have 8 possible message transmission histories (‘c’, ‘b’ can
be transmitted only after ‘d’ has been transmitted):

{[a, d, c, b], [a, d, b, c], [d, a, c, b], [d, a, b, c], [d, c, a, b], [d, c, b, a], [d, b, a, c], [d, b, c, a]}

. We use the same notation for carrier games (defined in Section A.3) and construct a
game as the following:

vred = vdca
red − vdcab

red + vdba
red − vdbac

red
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Top features Sex Age Systolic BP

Background mean NaN 50 135
Foreground sample Female 51 118

Attributions Independent On-manifold ASV

Sex -0.11 -0.16 -0.1
Age -0.07 0.23 -0.08
Systolic BP -0.05 -0.22 0.0
Poverty index -0.03 0.09 -0.02
Blood pressure 0.0 0.0 -0.08
TIBC 0.0 -0.16 0.0
Diastolic BP -0.02 -0.08 0.0
Pulse pressure -0.01 -0.11 0.0
Serum Iron 0.01 0.07 0.0
BMI -0.0 -0.05 -0.0
White blood cells -0.01 0.03 0.0
Serum Protein -0.0 0.05 0.0
Serum Albumin -0.0 -0.04 0.0
Inflamation 0.0 0.0 -0.02
Serum Cholesterol -0.0 0.04 -0.0
Iron 0.0 0.0 0.02
Sedimentation rate -0.01 -0.01 0.0
Race -0.0 0.0 -0.01
TS 0.01 0.01 0.0
Serum Magnesium -0.0 -0.01 -0.0
Blood protein 0.0 0.0 -0.01
Red blood cells -0.0 0.01 -0.0

(A) Shapley Flow

FIGURE A.10: Comparison among methods on 100 background samples
from the nutrition dataset, showing top 10 features/edges.
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(A) Age vs. output (B) Age vs. systolic blood pressure

FIGURE A.11: Age appears to be highly risky in on-manifold SHAP because
it steals credit from other variables.

B
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Y

a

c
b

(A) Red cut

B

Ad
y

a

c
b

(B) Green cut

FIGURE A.12: Two cuts that represent two boundaries for the same causal
graph.
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Because of the linearity axiom, we have

ϕvred(a) > 0, ϕvred(b) < 0, ϕvred(c) < 0, ϕvred(d) = 0

.
However, when we consider the green boundary, the ordering dcab and dbac does not

exist because in the green boundary A and Y are assumed to be a black-box. Therefore,
vgreen = 0, which means a is now a dummy edge: ϕvgreen(a) = 0 ̸= ϕvred(a). This demon-
strate that we cannot consider all histories inH and being boundary consistent.
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Appendix B

Credible Model Appendix

This Appendix includes additional results on Physionet 2012 challenge dataset and proofs
for properties in Section 4.3.4. We assume λ > 0 because otherwise the model is not
regularized.

B.1 Physionet Results with stage-wise feature selection

Besides regularization, another way to learn a credible model is to preprocess the input
to exclude non-expert identified features that are highly correlated with expert identi-
fied features. By doing so, we preserve non-expert identified features that are useful for
prediction. However, this two stage approach (e.g., feature selection followed by l2 reg-
ularized logistic regression) requires setting a correlation threshold to eliminate features
(i.e., non-expert identified features are eliminated if they have a correlation higher than
the threshold with any of the expert identified features). If the threshold is set too high,
we risk keeping irrelevant non-expert identified features. If this threshold is set too low,
we risk throwing away relevant non-expert identified features. We therefore explore us-
ing different correlation thresholds. Results for this two stage approach applied to the
Physionet 2012 challenge dataset are shown in Table B.1. We include the expert feature
only baseline and the EYE regularization results from before to compare to this two staged
approach. The correlation threshold holds are 0.4, 0.6, and 0.8 respectively. As expected,
as the correlation threshold decreases, the alignment with experts (AP) increases because
more non-expert features are thrown away. However, the accuracy decreases because
more relevant non-expert identified features are thrown away. The two stage approach is
less accurate compared to regularization approaches such as EYE because it ignores the
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TABLE B.1: Stage-wise feature selection
is inaccurate because it ignores the condi-
tional distribution of target given input.

It only models correlation in the input

Method AP AUC

expert-features-only 1∗ 0.754
EYE 0.671 0.815
Two-stage-0.4 0.541 0.760
Two-stage-0.6 0.365 0.782
Two-stage-0.8 0.260 0.789

conditional distribution of target given input and only models correlation in the input.
For example, two features that have the same correlation with an expert identified fea-
ture could have different correlation with the target (one more predictive than the expert
feature and one similarly predictive as the expert feature), yet they are treated equally
in the feature selection stage. This means we cannot throw away one feature but not the
other. If we throw away both, the model can be less accurate. Otherwise, keeping both
can decrease alignment with experts.

B.2 Derivation of original EYE penalty

First note that {x | q(x) = c} is the convex contour plot of q for c ∈ R. We set c so that the
slope in the first quadrant between known important factor and unknown feature is −1.

Since we only care about the interaction between known and unknown risk factors
and that the contour is symmetric about the origin, without loss of generality, let y be the
feature of unknown importance and x be the known important factor and y ≥ 0, x ≥ 0.
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2βy + (1− β)x2 = c

⇒ y =
c

2β
− (1− β)x2

2β

⇒ y = 0⇒ x =

√
c

1− β

⇒ f ′(x) = − (1− β)

β
x

⇒ f ′(
√

c
1− β

) = −1− β

β

√
c

(1− β)
= −1

⇒ c =
β2

1− β

⇒ 2βy + (1− β)x2 =
β2

1− β
(B.1)

Thus, we just need q(x) = β2

1−β . The rest deals with scaling of the level curve. We
define EYE penalty as a an atomic norm ∥ · ∥A introduced in [144]:

∥x∥A := inf {t > 0 | x ∈ tconv(A)}

where conv is the convex hull operator of its argument set A.
Let A =

{
x | q(x) ≤ β2

1−β

}
. Using the fact that the sublevel set of q is convex, we have

eye(x) = inf
{

t > 0 | x ∈
{

tx | q(x) ≤ β2

1− β

}}
(B.2)

B.3 EYE has no extra parameter

We show that β conserves the shape of the contour and only controls the size of the con-
tour, which is redudent given λ. Therefore, we can remove β from EYE’s formulation.

Proof. Consider the contour B1 =
{

x : eyeβ1(x) = t
}

and B2 =
{

x : eyeβ2(x) = t
}

, we
want to show B1 is similar to B2. To do that, let’s consider cases in which t = 0 and t ̸= 0.
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When t = 0, since EYE is a norm, B1 = B2 = {0}. Therefore they are trivially similar

to each other. When t ̸= 0, we can write B1 as t
{

x : x ∈
{

x | qβ1(x) = β2
1

1−β1

}}
, and B2

as t
{

x : x ∈
{

x | qβ2(x) = β2
2

1−β2

}}
. We further drop t as it doesn’t affect similarity. Let

B′1 =
{

x : x ∈
{

x | qβ1(x) = β2
1

1−β1

}}
and B′2 =

{
x : x ∈

{
x | qβ2(x) = β2

2
1−β2

}}
. To show

that B1 is similar to B2, we just need to show that B′1 is similar to B′2. In fact, we can show
that B′2 = β2(1−β1)

β1(1−β2)
B′1 as follows. Take x ∈ B′1, then qβ1(x) = 2β1∥(1− r) ⊙ x∥1 + (1−

β1)∥r⊙ x∥2
2 =

β2
1

1−β1
. let x′ = β2(1−β1)

β1(1−β2)
x, then

qβ2(x′) = 2β2∥(1− r)⊙ x′∥1 + (1− β2)∥r⊙ x′∥2
2

=
2β2

2(1− β1)

β1(1− β2)
∥(1− r)⊙ x∥1 +

β2
2(1− β1)

2

β2
1(1− β2)

∥r⊙ x∥2
2

=
β2

2(1− β1)

β2
1(1− β2)

(2β1∥(1− r)⊙ x∥1 + (1− β1)∥r⊙ x∥2
2)

=
β2

2(1− β1)

β2
1(1− β2)

β2
1

1− β1

=
β2

2
1− β2

This shows that x′ ∈ B′2, that is β2(1−β1)
β1(1−β2)

B′1 ⊂ B′2. The other direction can be similarly
proven.

B.4 Equivalence with the triangular form of EYE penalty

In this section, we prove Equation (4.2) and (4.3) are equivalent.

Proof. Since β can be arbitrarily set (B.3), fix β=0.5, then Equation (4.2) becomes

eye(x) = inf
{

t > 0 | x ∈ t
{

x | 2∥(1− r)⊙ x∥1 + ∥r⊙ x∥2
2 = 1

}}
(B.3)
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Assume x ̸= 0 and denote eye(x) := t, then x ∈ t
{

x | 2∥(1− r)⊙ x∥1 + ∥r⊙ x∥2
2 = 1

}
,

that is 2∥(1−r)⊙x∥1
t +

∥r⊙x∥2
2

t2 = 1. As this is a quadratic equation in t and from assumption
we know t > 0 (EYE being a norm and x ̸= 0), solving for t yields:

t = ∥(1− r)⊙ x∥1 +
√
∥(1− r)⊙ x∥2

1 + ∥r⊙ x∥2
2 (B.4)

Note that in the event x = 0, t = 0, Equation (B.4) agrees with the fact that eye(0) = 0.
Thus Equation (4.3) and (4.2) are equivalent.

B.5 Sparsity with Orthonormal Design Matrix

We consider a special case of regression and orthogonal design matrix (X⊤X = I) with
EYE regularization. This restriction allows us to obtain a closed form solution so that key
features of EYE penalty can be highlighted. With Equation (4.3), we have

min
θ

1
2
∥y− Xθ∥2

2 + nλ

(
∥(1− r)⊙ θ∥1 +

√
∥(1− r)⊙ θ∥2

1 + ∥r⊙ θ∥2
2

)
(B.5)

Since the objective is convex, we solve for its subgradient g.

g = X⊤Xθ− X⊤y + nλ(1− r)⊙ s +
nλ

Z
(∥(1− r)⊙ θ∥1(1− r)⊙ s + r⊙ r⊙ θ) (B.6)

where si = sgn(θi) if θi ̸= 0, si ∈ [−1, 1] if θi = 0, and Z =
√
∥(1− r)⊙ θ∥2

1 + ∥r⊙ θ∥2
2.

By our assumption X⊤X = I, and the fact that θ̂
OLS

= (X⊤X)−1X⊤y = X⊤y (the
solution for oridinary least squares), we simplify (B.6) as

g = θ− θ̂
OLS

+ nλ(1− r)⊙ s +
nλ

Z
(∥(1− r)⊙ θ∥1(1− r)⊙ s + r⊙ r⊙ θ) (B.7)

Setting g to 0 we have
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θ̂i =
θ̂OLS

i

1 + nλ
Z r2

i
max

0, 1−
nλ(1− ri)

(
1 + ∥(1−r)⊙θ̂∥1

Z

)
∣∣θ̂OLS

i

∣∣
 (B.8)

where Z =
√
∥(1− r)⊙ θ̂∥2

1 + ∥r⊙ θ̂∥2
2.

Note that Equation (B.8) is still an implicit equation in θ because Z is a function of θ̂.
Also, we implicitly assumed that Z ̸= 0.

Although this is an implicit equation for θi, the max term confirms EYE’s ability to set
weights to exactly zero in the orthonormal design matrix setting.

What if Z = 0? This only happens if θ = 0. However, by the complementary slackness
condition in KKT, we know λ > 0 implies that the solution is on the boundary of the
constraint formulation of the problem (for λ = 0, we are back to ordinary least squares).
So long as the optimal solution for the unconstrained problem is not at 0, we won’t get
into trouble unless the constraint is eye(θ) ≤ 0, which won’t happen in the regression
setting as λ is finite. If the optimal solution for the unconstrained problem is 0, we are
again back to ordinary least squares solutions. So the upshot is we can assume Z ̸= 0
otherwise it will automatically revert to ordinary least squares.

B.6 Perfect Correlation

Denote the objective function in Equation (B.5) as L(θ) and denote θ̂ as the optimal solu-
tion, we show that

• ri = 1, rj = 0, xi = xj =⇒ θ̂j = 0 (EYE penalty prefers known risk factors over
unknown risk factors).

Proof. Assume ri = 1, rj = 0, and consider θ̂′ that only differs from θ̂ at the ith and
jth entry such that θ̂′i = θ̂i + θ̂j and θ̂′j = 0, we have L(θ̂)− L(θ̂′) = 1

2∥y− Xθ̂∥2
2 +

nλ
(
|θ̂j|+

√
(C + |θ̂j|)2 + D + θ̂2

i

)
− 1

2∥y−Xθ̂′∥2
2−nλ

(
|θ̂′j|+

√
(C + |θ̂′j|)2 + D + θ̂′2i

)
where C and D are non-negative constant involving entries other than i and j. Note
that the sum of squared residual is the same for both θ̂′ and θ̂ owing to the fact that
xi = xj. Use the definition of θ̂′, we have
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L(θ̂)− L(θ̂′) = nλ

(
|θ̂j|+

√
(C + |θ̂j|)2 + D + θ̂2

i −
√

C2 + D + (θ̂i + θ̂j)2
)

Claim L(θ̂)− L(θ̂′) ≥ 0 with equality only if θ̂j = 0

Proof. Since nλ is positive, the claim is equivalent to√
(C + |θ̂j|)2 + D + θ̂2

i ≥
√

C2 + D + (θ̂i + θ̂j)2 − |θ̂j|

If the right hand side is negative, we are done since the left hand side is non-
negative. Otherwise, both sides are non-negative. We square them and rearrange to
get the equivalent form

θ̂2
j + 2θ̂i θ̂j ≤ 2|θ̂j|

√
C2 + D + (θ̂i + θ̂j)2 + 2C|θ̂j|

which is true following

θ̂2
j + 2θ̂i θ̂j ≤ 2θ̂2

j + 2θ̂i θ̂j − θ̂2
j (B.9)

≤ 2|θ̂j||θ̂i + θ̂j| (B.10)

= 2|θ̂j|
√
(θ̂i + θ̂j)2 (B.11)

≤ 2|θ̂j|
√

C2 + D + (θ̂i + θ̂j)2 + 2C|θ̂j| (B.12)

Again if θ̂j ̸= 0, the inequality is strict from Equation (B.9) to Equation (B.10)

Since we assumed that θ̂ is optimal, the equality in B.6 must hold, thus θ̂j = 0.

• ri = 1, rj = 1, xi = xj =⇒ θ̂i = θ̂j (feature weights are dense in known risk factors).
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Proof. Assume θ̂ is optimal, consider θ̂′ that is the same as θ̂ except θ̂′i = θ̂′j =
θ̂j+θ̂j

2 .

Assume θ̂ ̸= θ̂′: θ̂i ̸= θ̂j. As in the last proof, the data loss (sum of squared residual)
is the same in both solutions because xi = xj. As a result we have L(θ̂)− L(θ̂′) =

nλ

√(C + |θ̂i|+ |θ̂j|
)2

+ D + θ̂2
i + θ̂2

j −

√(
C + 2

|θ̂i+θ̂j|
2

)2

+ D + 2
|θ̂i+θ̂j|2

4

, which

is greater or equal to

nλ

(√(
C + |θ̂i|+ |θ̂j|

)2
+ D + θ̂2

i + θ̂2
j −

√(
C + |θ̂i|+ |θ̂j|

)2
+ D +

|θ̂i+θ̂j|2
2

)
. Again,

C and D are non-negative constant involving entries other than i and j.

Since

θ̂2
i + θ2

j −
|θ̂i + θ̂j|2

2
=

(θ̂i − θ̂j)
2

2
> 0

by assumption that θ̂i ̸= θ̂j for the optimal solution. This shows L(θ̂)− L(θ̂′) > 0,
which contradict our assumption. Thus θ̂i = θ̂j for the optimal solution.

• ri = 0, rj = 0, xi = xj =⇒ back to LASSO continuum

Note that fixing θk ∀k ̸∈ {i, j}, solving for θi and θj reduces the problem to LASSO,
thus all properties of LASSO carry over for θi and θj. Thus sparsity is maintained in
unknown features.

B.7 General Correlation

Grouping effect in elastic net is still present in eye penalty within groups with similar
level of risk.

Theorem B.7.1. if θ̂i θ̂j > 0 and design matrix is standardized, then

|r2
i θ̂i − r2

j θ̂j|
Z

≤
√

2(1− ρ)∥y∥2

nλ
+ |ri − rj|

(
1 +
∥(1− r)⊙ θ̂∥1

Z

)

where Z =
√
∥(1− r)⊙ θ̂∥2

1 + ∥r⊙ θ̂∥2
2, ρ is the sample covariance between xi and xj.
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Proof. Denote the objective in Equation (B.5) as L. Assume θ̂i θ̂j > 0, θ̂ is the optimal
weights, and the design matrix X is standardized to have zero mean and unit variance in
its column. Via the optimal condition and (B.6), subgradient g at θ̂ is 0. Hence we have

− x⊤i (y− Xθ̂) + nλ((1− ri)si +
∥(1− r)⊙ θ̂∥1

Z
((1− ri)si + r2

i θ̂i)) = 0 (B.13)

− x⊤j (y− Xθ̂) + nλ((1− rj)sj +
∥(1− r)⊙ θ̂∥1

Z
((1− rj)sj + r2

j θ̂j)) = 0 (B.14)

The assumption that θ̂i θ̂j > 0 implies sgn(θ̂i) = sgn(θ̂j) and eliminates the need to
discuss the subgradient issue. Subtract B.14 from B.13, we have (x⊤j − x⊤i )(y − Xθ̂) +

nλ((rj − ri)sgn(θ̂i) +
∥(1−r)⊙θ̂∥1

Z ((rj − ri)sgn(θ̂i) + r2
i θ̂i − r2

j θ̂j)) = 0. We can further rear-
range the equation to get

r2
i θ̂i − r2

j θ̂j

Z
=

(x⊤i − x⊤j )(y− Xθ̂)

nλ
+ (ri − rj)sgn(θ̂i)

(
1 +
∥(1− r)⊙ θ̂∥1

Z

)
(B.15)

Being the optimal weights, L(θ̂) ≤ L(0), which implies ∥y− Xθ̂∥2
2 ≤ ∥y∥2

2. Moreover,
the standardized design matrix gives ∥xi − xj∥2

2 = ⟨xi, xi⟩+ ⟨xj, xj⟩ − 2⟨xi, xj⟩ = 2(1− ρ).
Taking the absolute value of Equation (B.15) and applying Cauchy Schwarz inequality,
we get

|r2
i θ̂i − r2

j θ̂j|
Z

≤
∥xi − xj∥2∥y− Xθ̂∥2

nλ
+ |ri − rj|

(
1 +
∥(1− r)⊙ θ̂∥1

Z

)
(B.16)

which is less or equal to√
2(1− ρ)∥y∥2

nλ
+ |ri − rj|

(
1 +
∥(1− r)⊙ θ̂∥1

Z

)
(B.17)
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Corollary B.7.2. If θ̂i θ̂j > 0, design matrix is standardized, and ri = rj ̸= 0

|θ̂i − θ̂j|
Z

≤
√

2(1− ρ)∥y∥2

r2
i nλ

where Z =
√
∥(1− r)⊙ θ̂∥2

1 + ∥r⊙ θ̂∥2
2, ρ is the sample covariance between xi and xj.

This verifies the existence of the grouping effect: highly correlated features (with sim-
ilar risk) are grouped together in the parameter space.
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Appendix C

Concept Credible Model Appendix

C.1 Derivation of the least squared solution for Section 5.3.1

Given X = [C, S, U], Y = C + U, corr(C, U) ̸= 1, and C = S in D, a least squares linear
regression solution gives a prediction of Ŷ = (1− t)C + U + tS.

Proof. We know C + U is a solution because they give 0 loss. Since C = S in the dataset,
(1− t)C + tS + U is also a solution for any t ∈ R. Since U and C are not co-linear, the
solution has rank 2. By the rank nullity theorem, we know the null space has dimension 1
(because the dimension of input is 3), thus its least squares solutions also has dimension
of 1, which shows that (1− t)C + tS + U are all the solutions that minimizes the loss.

The minimum L2 norm solution of this problem results in t = 0.5

Proof. Given the solution is (1− t)C + tS + U, we minimize the coefficient with L2 loss:
arg mint(1− t)2 + t2 + 1, which solves to t = 0.5.

If we only use C for prediction (i.e., CBM), the solution will not achieve a loss of 0 since it
ignores U.

Proof. Even with infinite training data, fitting Y using C results in E(Y|C) = C +E(U|C).
The L2 loss with Y is thus E((U −E(U|C))2), which is non-zero when C and U are not
co-linear.
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(A) Test Accuracy (biased) violating A1 (B) Test Accuracy (biased) violating A2

FIGURE C.1: (a) When A1 is broken by adding bias to how C is trained, the
biased dataset performances are constant across methods. Note that except
for CBM, all methods performed about the same. (b) When A2 is broken by
replacing dimensions of C with random noise, the predictive power of CBM
decreases, yet other methods have similar performance on the biased dataset

because they can learn from X in addition to C.

C.2 Additional CUB results

Test accuracy of CUB experiments on the biased dataset? In the main text, we showed
that CCM methods perform well when shortcuts are violated. Here we present the result
of methods on the biased dataset when A1 and A2 are broken in Figure C.1a and Figure
C.1b respectively. Overall, CBM approaches perform worse on the biased dataset because
it lacks the ability to learn U, while all other approaches perform similarly.

What if S carries information outside of C ∪ U? The second way to break A2 is to
directly correlate S with Y on line 4 of the BIAS function. We sweep T to control the corre-
lation between S and Y. As shown in Figure C.2, as T increases, the performance on the
biased test set increase as well, but not the clean dataset performance, confirming that S
contains information outside of C and U. We also observe that CCM RES performs worse
than the standard model on both the biased and portions of the clean dataset. In contrast,
CCM EYE is consistently better than STD(X) on the clean dataset and comparable to it on
the biased dataset. Moreover, STD(C, X) is comparable to CCM EYE until the shortcut is

122



(A) Test Acc (biased) (B) Test Acc (clean)

FIGURE C.2: Results of relaxing A2 by making S more informative. Here,
instead of generating S from CBM, we correlate S with Y directly and sweep
the value of T. This experiment demonstrates what happens when S contains

information beyond C and U.

the strongest (i.e., T = 1). This makes sense because when shortcuts are weak compared
to C, they are not taken by STD(C, X).

How does λ affect model performance? Since CCM EYE has an additional parameter
λ, we want to understand its effect on model performance. Figure C.3 summarizes the
results on the CUB dataset. Fixing test accuracy on the biased dataset (e.g., λ ≤ 10−4),
increasing the EYE penalty monotonically increases model performance on the clean
dataset. This means that credible model’s principle (i.e., increasing alignment with ex-
pert without sacrificing performance) could help mitigate the use of shortcut when A1
and A2 hold.

How does CCM responds to different levels of shortcut? Regardless of nσ, CCM out-
performs baselines (Figure C.4).

C.3 Additional MIMIC results

We include more results of the MIMIC dataset in Figure C.3 and Figure C.3. Each plot
varies the training distribution (noted by the black line) used to train the models and
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(A) Test Acc (biased) (B) Test Acc (clean)

FIGURE C.3: Results of sweeping λ. Without sacrificing test accuracy on the
biased dataset (λ ≤ 10−4 in this case for the CUB dataset), increasing λ boosts
performance on the clean test set, justifying our choice of hyperparameter for

CCM EYE.

(A) Test Acc (biased) (B) Test Acc (clean)

FIGURE C.4: Results of sweeping number of noises (nσ). Regardless of nσ,
CCM EYE and CCM RES outperform baselines on the clean dataset, while

maintaining similar performance on the biased dataset.
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(A) train corr(Male, Edema) = 0.70 (B) train corr(Male, Edema) = 0.76

(C) train corr(Male, Edema) = 0.81 (D) train corr(Male, Edema) = 0.85

FIGURE C.5: Result of the MIMIC-CXR experiment for different training dis-
tributions. CCM EYE consistently outperforms baselines models when the
training and testing distribution are close. It only performs worse against

CBM when the testing distribution is very different from the training.

compares their results on different test distributions. Note that CCM EYE consistently
outperforms baselines models when the training and testing distribution are close. It
only performs worse against CBM when the testing distribution is very different from the
training.

C.4 Experiments on the Physionet Challenge dataset

The Physionet Challenge 2012 dataset [152] is a publicly available benchmark dataset
from [151] in which one aims to predict in-hospital mortality using electronic health
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(A) train corr(Male, Edema) = 0.90 (B) train corr(Male, Edema) = 0.95

(C) train corr(Male, Edema) = 1.00

FIGURE C.6: Result of the MIMIC-CXR experiment for different training dis-
tributions (correlations between male and edema are 0.9, 0.95, and 1 respec-
tively). CCM EYE consistently outperforms baselines models when the train-
ing and testing distribution are close. It only performs worse against CBM

when the testing distribution is very different from the training.
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FIGURE C.7: Treating features correlated with C as shortcuts in the Physionet
Challenge 2012 dataset, we measure the performance when shortcuts break
(set to 0). As expected, when shortcuts are highly correlated with C, CCM
EYE outperforms all baselines. Even when shortcuts are not highly correlated
with C (violating A2), CCM EYE is only second to CBM. In contrast, CCM

RES has trouble beating the baselines because U is correlated with S.

record collected in intensive care units for 4, 000 patients. Our preprocessing follows [13],
obtaining a feature set of size 130. In addition to the features, we have 15 variables corre-
sponding to the Simplified Acute Physiology Score (SAPS-I) that are developed by physi-
cians to predict ICU mortality in patients greater than the age of 15 [153]. We use those
features along with age as C. This mimics setting where the true concepts are learned
based on medical knowledge.

Here, we define shortcut variables to be variables correlated with the 15 SAPS-I vari-
ables and age. In other words, S is composed of all non C features that have a correlation
with features in C above a certain threshold. Other features are regarded as U as their
value is not causally related to the shortcuts. This setup mimics the setting in which
shortcuts are correlated with known risk factors, motivated in [13].

Model Training. Following [13], we train linear models on this dataset with the Adam
optimizer [175]. We randomly reserve 25% of patients as the test set. Of the remaining
data, we randomly split 25% for validation and the rest for training. We train baseline
models as well as our models using the full set of features and duplicate features in C for
STD(C, X) to increase its chance to use C.
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Evaluation. We test model performance by setting the value for shortcut variables to 0,
making them uninformative at test time. If a model is robust to S, this change shouldn’t
affect its prediction accuracy. The biased dataset performance is reported when no short-
cuts are “zeroed out”. This happens with a correlation threshold of 1 as no features other
than C have a perfect correlation with features in C.

Results. CCM EYE outperforms all other baselines in Figure C.7. CCM EYE does not
use features that are highly correlated with C, thus eliminating the use of S. In contrast,
CCM RES does not do as well even when C and S are highly correlated (A2). This hap-
pens because U is correlated with S (yet not causally related). For example, if we fix the
correlation threshold at 0.8 for shortcuts, 57% of variables in U have at least 0.1 correlation
with a variable in S.
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